ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing

ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算

基本信息

  • 批准号:
    0427912
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-15 至 2008-10-31
  • 项目状态:
    已结题

项目摘要

Abstract for Collaboration 0427985, 0427464, 0427094,0427912,0427695 A multidisciplinary team of researchers from Argonne National Laboratory, Carnegie Mellon University, Columbia University, University of Chicago, Emory University, and University of Pennsylvania, with collaborators from the Universities of Graz and Lubek, will initiate a long term research project on image-driven, inversion-based biophysical modeling. The team includes expertise in numerical algorithms and scientific computing, fluid and solid biomechanics, PDE optimization, inverse problems, medical image analysis and processing, and distributed and grid computing necessary to tackle this class of problems. This project aims to create a framework for assimilating multimodal dynamic medical image data to produce highly-resolved, physically-realistic, patient-specific biomechanics models. While the computational and algorithmic aspects of the project are widely applicable, the target application will be the construction of patient-specific cardiac biomechanics models from 4D image datasets of heart motion. Such models are useful for medical diagnosis and surgical planning. This places a premium on quick turnaround of the computations, which mean they must be fast, scalable, and capable of exploiting grid-based computing. Research will focus on three key areas that undergird the project's overall goals: registration, inversion, and distributed computing. The registration research component will create multilevel algorithms to extract cardiac deformation histories from time-varying medical image datasets via the solution of sequences of 3D image registration problems. The inversion research component will develop multilevel algorithms that use these deformation field histories as virtual observations to solve inverse problems for cardiac biomechanical parameters. The distributed computing research component will create tools for performance prediction and resource scheduling that support simulations across distributed computational resources. Dovetailing with the research components, the project will undertake an educational program designed to communicate the fruits of its work and of the wider benefits of the integration of the biomedical sciences, computing sciences, and computational sciences, to a more general audience of students, disciplinary researchers, and the lay public. The professional activities of the team members in the inversion, image registration, grid computing, and computational science communities will be parlayed to organize workshops and international meetings, edit volumes, teach summer schools, develop university and short courses, and engage in outreach activities---as they have done in the past---but with greater emphasis on the field of computational biomedicine. The proposed image-based cardiac biomechanics modeling application will provide an excellent opportunity to demonstrate the benefits to health and welfare that advances in optimization-based registration and inversion algorithms and Grid computing can provide.
摘要协作0427985,0427464,0427094,0427912,0427695一个由来自阿贡国家实验室、卡内基梅隆大学、哥伦比亚大学、芝加哥大学、埃默里大学和宾夕法尼亚大学的多学科研究人员组成的团队,以及来自格拉茨大学和卢贝克大学的合作者,将启动一个关于图像驱动的、基于反演的生物物理模型的长期研究项目。该团队包括数值算法和科学计算、流体和固体生物力学、PDE优化、反问题、医学图像分析和处理以及解决这类问题所需的分布式和网格计算方面的专业知识。该项目旨在创建一个框架,用于同化多模式动态医学图像数据,以产生高度分辨率、物理逼真、患者特定的生物力学模型。虽然该项目的计算和算法方面被广泛应用,但目标应用将是从心脏运动的4D图像数据集构建特定于患者的心脏生物力学模型。这样的模型对医学诊断和外科手术规划很有用。这将重点放在计算的快速周转上,这意味着它们必须是快速的、可伸缩的,并且能够利用基于网格的计算。研究将集中在支撑该项目总体目标的三个关键领域:注册、反转和分布式计算。配准研究部分将创建多层算法,通过解决3D图像配准问题的序列,从时变的医学图像数据集中提取心脏变形历史。反演研究部分将开发多层次算法,将这些形变场历史用作虚拟观测,以解决心脏生物力学参数的反问题。分布式计算研究组件将创建支持跨分布式计算资源的模拟的性能预测和资源调度工具。与研究部分相匹配,该项目将开展一项教育计划,旨在向更广泛的学生、学科研究人员和普通公众传达其工作成果以及生物医学、计算科学和计算科学整合的更广泛好处。团队成员在反演、图像配准、网格计算和计算科学界的专业活动将被用于组织研讨会和国际会议、编辑卷、教授暑期课程、开发大学和短期课程,并参与外联活动-就像他们过去所做的那样-但更加重视计算生物医学领域。拟议的基于图像的心脏生物力学建模应用程序将提供一个极好的机会来展示基于优化的配准和反演算法以及网格计算的进步对健康和福利的好处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Gropp其他文献

CommBench: Micro-Benchmarking Hierarchical Networks with Multi-GPU, Multi-NIC Nodes
CommBench:使用多 GPU、多 NIC 节点对分层网络进行微基准测试
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mert Hidayetoğlu;Simon Garcia De Gonzalo;Elliott Slaughter;Yu Li;Christopher Zimmer;Tekin Bicer;Bin Ren;William Gropp;Wen;Alexander Aiken
  • 通讯作者:
    Alexander Aiken
Multiprocessors
多处理器
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David A. Padua;Amol Ghoting;J. Gunnels;M. Squillante;J. Meseguer;James H. Cownie;Duncan Roweth;Sarita V. Adve;Hans J. Boehm;Sally A. McKee;Robert W. Wisniewski;G. Karypis;Allen D. Malony;Steven Gottlieb;R. Riesen;Arthur B. Maccabe;G. Bilardi;A. Pietracaprina;A. Kejariwal;Alexandru Nicolau;Christian Lengauer;John L. Gustafson;William Gropp;J. Prost;Geoff Lowney;P. Amestoy;A. Buttari;I. Duff;A. Guermouche;J. L’Excellent;B. Uçar;Robert H. Halstead;M. Nemirovsky;S. Pakin
  • 通讯作者:
    S. Pakin
Thread-safety in an MPI implementation: Requirements and analysis
  • DOI:
    10.1016/j.parco.2007.07.002
  • 发表时间:
    2007-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    William Gropp;Rajeev Thakur
  • 通讯作者:
    Rajeev Thakur
Enabling real-time multi-messenger astrophysics discoveries with deep learning
利用深度学习实现实时多信使天体物理学发现
  • DOI:
    10.1038/s42254-019-0097-4
  • 发表时间:
    2019-10-03
  • 期刊:
  • 影响因子:
    39.500
  • 作者:
    E. A. Huerta;Gabrielle Allen;Igor Andreoni;Javier M. Antelis;Etienne Bachelet;G. Bruce Berriman;Federica B. Bianco;Rahul Biswas;Matias Carrasco Kind;Kyle Chard;Minsik Cho;Philip S. Cowperthwaite;Zachariah B. Etienne;Maya Fishbach;Francisco Forster;Daniel George;Tom Gibbs;Matthew Graham;William Gropp;Robert Gruendl;Anushri Gupta;Roland Haas;Sarah Habib;Elise Jennings;Margaret W. G. Johnson;Erik Katsavounidis;Daniel S. Katz;Asad Khan;Volodymyr Kindratenko;William T. C. Kramer;Xin Liu;Ashish Mahabal;Zsuzsa Marka;Kenton McHenry;J. M. Miller;Claudia Moreno;M. S. Neubauer;Steve Oberlin;Alexander R. Olivas;Donald Petravick;Adam Rebei;Shawn Rosofsky;Milton Ruiz;Aaron Saxton;Bernard F. Schutz;Alex Schwing;Ed Seidel;Stuart L. Shapiro;Hongyu Shen;Yue Shen;Leo P. Singer;Brigitta M. Sipocz;Lunan Sun;John Towns;Antonios Tsokaros;Wei Wei;Jack Wells;Timothy J. Williams;Jinjun Xiong;Zhizhen Zhao
  • 通讯作者:
    Zhizhen Zhao

William Gropp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Gropp', 18)}}的其他基金

Category I: Bridging the Gap Between AI/ML Computing Demands and Today's Capabilities
第一类:缩小 AI/ML 计算需求与当今能力之间的差距
  • 批准号:
    2320345
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
Category I: Crossing the Divide Between Today's Practice and Tomorrow's Science
第一类:跨越今天的实践和明天的科学之间的鸿沟
  • 批准号:
    2005572
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
MRI: Development of an Instrument for Deep Learning Research
MRI:深度学习研究仪器的开发
  • 批准号:
    1725729
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
BD Hubs: MIDWEST: SEEDCorn: Sustainable Enabling Environment for Data Collaboration
BD 中心:中西部:SEEDCorn:数据协作的可持续支持环境
  • 批准号:
    1550320
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CSR: Medium: Collaborative Research: Decoupled Execution Paradigm for Data-Intensive High-End Computing
CSR:中:协作研究:数据密集型高端计算的解耦执行范式
  • 批准号:
    1161507
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: System Software for Scalable Applications
合作研究:可扩展应用的系统软件
  • 批准号:
    1036137
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF Workshop on Software Development Environment for Science & Engineering Applications
NSF 科学软件开发环境研讨会
  • 批准号:
    1048964
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Programming Models and Application Requirements for an Exascale Computing Point Design Study
百亿亿次计算点设计研究的编程模型和应用要求
  • 批准号:
    0837719
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
  • 批准号:
    0849301
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
  • 批准号:
    1404694
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR-SCOTUS: A Resource for Collaborative Research in Speech Technology, Linguistics, Decision Processes, and the Law
ITR-SCOTUS:语音技术、语言学、决策过程和法律合作研究的资源
  • 批准号:
    1139735
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    0963973
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    1018072
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR Collaborative Research: A Reusable, Extensible, Optimizing Back End
ITR 协作研究:可重用、可扩展、优化的后端
  • 批准号:
    0838899
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
  • 批准号:
    0833849
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    0808419
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
  • 批准号:
    0849301
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR: Collaborative Research: Modeling and Display of Haptic Information for Enhanced Performance of Computer-Integrated Surgery
ITR:协作研究:触觉信息建模和显示,以提高计算机集成手术的性能
  • 批准号:
    0711040
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ITR Collaborative Research: GEON: A Research Project to Create Cyberinfrastructure for the Geosciences
ITR 合作研究:GEON:为地球科学创建网络基础设施的研究项目
  • 批准号:
    0724265
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了