MRI: Development of an Instrument for Deep Learning Research
MRI:深度学习研究仪器的开发
基本信息
- 批准号:1725729
- 负责人:
- 金额:$ 272.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will develop and deploy a novel instrument for accelerating deep learning research at the University of Illinois (UI). The instrument will integrate the latest computing, storage, and interconnect technologies in a purpose-built shared-use system. This Instrument will deliver unprecedented performance levels for extreme data intensive emerging fields of research with far-reaching impacts in many areas, such as computer vision, natural language processing, artificial intelligence, healthcare and education. The instrument development will be driven by the UI deep learning (DL) community needs and will be carried out in collaboration with IBM and Nvidia. The instrument will serve as a focal point for the rapidly growing DL research community at UI, enable expansion of several research programs at UI, and contribute to STEM education and training.Specifically, the proposed instrument is a far-reaching cyberinfrastructure development for the research community and industry engaged with deep learning. The work will result in an advanced high-performing scalable instrument with capabilities far beyond those currently deployed in academia or industry to tackle large-scale deep learning projects. This instrument will serve as a focal point for a community-driven effort to advance the field of DL, integrating the work of computer scientists, systems engineers, and software developers. This project is transformative both in the systems architecture and domain science fields it will imbue, with new knowledge to be developed via new interactions and synergies that will emerge as part of this effort.The proposed development of this well-integrated instrument will improve the quality and expand the scope of research and training, provide inter- and intra-organizational use amongst many disciplines, and engage private sector partners. The work will have deep and long-lasting effects on future computer architectures for compute- and data-intensive applications by making the blueprints of the novel system architecture of the instrument publically available. Access to the high-performance software developed through this project will aid numerous science domains that utilize DL frameworks. The unprecedented computational capabilities of many applications will make it possible to tackle complex science, engineering and societal problems in many important fields ranging from education, to healthcare, to artificial intelligence (AI). This project will strive to include participants from under-represented minority and female students, to make new discoveries, train, and educate a new generation of users fluent with DL tools and methodologies, contributing to the development of a highly educated, and diverse workforce with specialized skillsets. Finally, the work will enable new industry-academic collaborations benefiting both the scientific community and industry nationwide.
该项目将开发和部署一种新的工具,用于加速伊利诺伊大学(UI)的深度学习研究。该仪器将在专用共享系统中集成最新的计算、存储和互连技术。该仪器将为极端数据密集型新兴研究领域提供前所未有的性能水平,并在许多领域产生深远影响,如计算机视觉,自然语言处理,人工智能,医疗保健和教育。仪器开发将由UI深度学习(DL)社区需求驱动,并将与IBM和Nvidia合作进行。该仪器将作为UI快速发展的DL研究社区的焦点,使UI的几个研究项目得以扩展,并有助于STEM教育和培训。具体而言,拟议的仪器是研究社区和从事深度学习的行业的深远的网络基础设施开发。这项工作将产生一种先进的高性能可扩展工具,其能力远远超出目前学术界或工业界部署的解决大规模深度学习项目的能力。该工具将作为社区驱动的努力推进DL领域的焦点,整合计算机科学家,系统工程师和软件开发人员的工作。该项目在系统架构和领域科学领域都具有变革性,它将注入通过新的互动和协同作用开发的新知识,这些互动和协同作用将成为这一努力的一部分。拟议开发的这一综合性很强的工具将提高研究和培训的质量并扩大其范围,在许多学科之间提供组织间和组织内的使用,并吸引私营部门合作伙伴。这项工作将对未来的计算机体系结构的计算和数据密集型应用产生深刻而持久的影响,使该仪器的新系统架构的蓝图在计算机上可用。访问通过该项目开发的高性能软件将有助于利用DL框架的许多科学领域。许多应用程序前所未有的计算能力将使其能够解决从教育到医疗保健到人工智能(AI)等许多重要领域的复杂科学,工程和社会问题。该项目将努力包括来自代表性不足的少数民族和女学生的参与者,以进行新的发现,培训和教育新一代熟练使用DL工具和方法的用户,为发展受过高等教育的多元化劳动力做出贡献。最后,这项工作将使新的产业-学术合作惠及全国科学界和产业界。
项目成果
期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring HW/SW Co-Design for Video Analysis on CPU-FPGA Heterogeneous Systems
探索 CPU-FPGA 异构系统上视频分析的硬件/软件协同设计
- DOI:10.1109/tcad.2021.3093398
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Zhang, Xiaofan;Ma, Yuan;Xiong, Jinjun;Hwu, Wen-mei;Kindratenko, Volodymyr;Chen, Deming
- 通讯作者:Chen, Deming
Unsupervised Discovery of Dynamic Neural Circuits
动态神经回路的无监督发现
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Colin Graber, Ryan Loh
- 通讯作者:Colin Graber, Ryan Loh
Graph Structured Prediction Energy Networks
- DOI:
- 发表时间:2019-10
- 期刊:
- 影响因子:0
- 作者:Colin Graber;A. Schwing
- 通讯作者:Colin Graber;A. Schwing
tensorflow-tracing: A Performance Tuning Framework for Production
tensorflow-tracing:生产性能调优框架
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Hashemi, Sayed Hadi;Rausch, Paul;Rabe, Benjamin;Chou, Kuan-Yen;Liu, Simeng;Kindratenko, Volodymyr;Campbell, Roy H
- 通讯作者:Campbell, Roy H
Critical Minerals Map Feature Extraction Using Deep Learning
使用深度学习提取关键矿物图特征
- DOI:10.1109/lgrs.2023.3310915
- 发表时间:2023
- 期刊:
- 影响因子:4.8
- 作者:Luo, Shirui;Saxton, Aaron;Bode, Albert;Mazumdar, Priyam;Kindratenko, Volodymyr
- 通讯作者:Kindratenko, Volodymyr
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Gropp其他文献
CommBench: Micro-Benchmarking Hierarchical Networks with Multi-GPU, Multi-NIC Nodes
CommBench:使用多 GPU、多 NIC 节点对分层网络进行微基准测试
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Mert Hidayetoğlu;Simon Garcia De Gonzalo;Elliott Slaughter;Yu Li;Christopher Zimmer;Tekin Bicer;Bin Ren;William Gropp;Wen;Alexander Aiken - 通讯作者:
Alexander Aiken
Multiprocessors
多处理器
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
David A. Padua;Amol Ghoting;J. Gunnels;M. Squillante;J. Meseguer;James H. Cownie;Duncan Roweth;Sarita V. Adve;Hans J. Boehm;Sally A. McKee;Robert W. Wisniewski;G. Karypis;Allen D. Malony;Steven Gottlieb;R. Riesen;Arthur B. Maccabe;G. Bilardi;A. Pietracaprina;A. Kejariwal;Alexandru Nicolau;Christian Lengauer;John L. Gustafson;William Gropp;J. Prost;Geoff Lowney;P. Amestoy;A. Buttari;I. Duff;A. Guermouche;J. L’Excellent;B. Uçar;Robert H. Halstead;M. Nemirovsky;S. Pakin - 通讯作者:
S. Pakin
Thread-safety in an MPI implementation: Requirements and analysis
- DOI:
10.1016/j.parco.2007.07.002 - 发表时间:
2007-09-01 - 期刊:
- 影响因子:
- 作者:
William Gropp;Rajeev Thakur - 通讯作者:
Rajeev Thakur
Enabling real-time multi-messenger astrophysics discoveries with deep learning
利用深度学习实现实时多信使天体物理学发现
- DOI:
10.1038/s42254-019-0097-4 - 发表时间:
2019-10-03 - 期刊:
- 影响因子:39.500
- 作者:
E. A. Huerta;Gabrielle Allen;Igor Andreoni;Javier M. Antelis;Etienne Bachelet;G. Bruce Berriman;Federica B. Bianco;Rahul Biswas;Matias Carrasco Kind;Kyle Chard;Minsik Cho;Philip S. Cowperthwaite;Zachariah B. Etienne;Maya Fishbach;Francisco Forster;Daniel George;Tom Gibbs;Matthew Graham;William Gropp;Robert Gruendl;Anushri Gupta;Roland Haas;Sarah Habib;Elise Jennings;Margaret W. G. Johnson;Erik Katsavounidis;Daniel S. Katz;Asad Khan;Volodymyr Kindratenko;William T. C. Kramer;Xin Liu;Ashish Mahabal;Zsuzsa Marka;Kenton McHenry;J. M. Miller;Claudia Moreno;M. S. Neubauer;Steve Oberlin;Alexander R. Olivas;Donald Petravick;Adam Rebei;Shawn Rosofsky;Milton Ruiz;Aaron Saxton;Bernard F. Schutz;Alex Schwing;Ed Seidel;Stuart L. Shapiro;Hongyu Shen;Yue Shen;Leo P. Singer;Brigitta M. Sipocz;Lunan Sun;John Towns;Antonios Tsokaros;Wei Wei;Jack Wells;Timothy J. Williams;Jinjun Xiong;Zhizhen Zhao - 通讯作者:
Zhizhen Zhao
William Gropp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Gropp', 18)}}的其他基金
Category I: Bridging the Gap Between AI/ML Computing Demands and Today's Capabilities
第一类:缩小 AI/ML 计算需求与当今能力之间的差距
- 批准号:
2320345 - 财政年份:2023
- 资助金额:
$ 272.2万 - 项目类别:
Cooperative Agreement
Category I: Crossing the Divide Between Today's Practice and Tomorrow's Science
第一类:跨越今天的实践和明天的科学之间的鸿沟
- 批准号:
2005572 - 财政年份:2020
- 资助金额:
$ 272.2万 - 项目类别:
Cooperative Agreement
BD Hubs: MIDWEST: SEEDCorn: Sustainable Enabling Environment for Data Collaboration
BD 中心:中西部:SEEDCorn:数据协作的可持续支持环境
- 批准号:
1550320 - 财政年份:2015
- 资助金额:
$ 272.2万 - 项目类别:
Standard Grant
CSR: Medium: Collaborative Research: Decoupled Execution Paradigm for Data-Intensive High-End Computing
CSR:中:协作研究:数据密集型高端计算的解耦执行范式
- 批准号:
1161507 - 财政年份:2012
- 资助金额:
$ 272.2万 - 项目类别:
Continuing Grant
Collaborative Research: System Software for Scalable Applications
合作研究:可扩展应用的系统软件
- 批准号:
1036137 - 财政年份:2011
- 资助金额:
$ 272.2万 - 项目类别:
Standard Grant
NSF Workshop on Software Development Environment for Science & Engineering Applications
NSF 科学软件开发环境研讨会
- 批准号:
1048964 - 财政年份:2010
- 资助金额:
$ 272.2万 - 项目类别:
Standard Grant
Programming Models and Application Requirements for an Exascale Computing Point Design Study
百亿亿次计算点设计研究的编程模型和应用要求
- 批准号:
0837719 - 财政年份:2008
- 资助金额:
$ 272.2万 - 项目类别:
Standard Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
- 批准号:
0849301 - 财政年份:2007
- 资助金额:
$ 272.2万 - 项目类别:
Continuing Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
- 批准号:
0427912 - 财政年份:2004
- 资助金额:
$ 272.2万 - 项目类别:
Continuing Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
MRI: Track 1 Development of Large Optic Crystalline Coating Characterization Instrument (LOCCCI) for Gravitational Wave Detectors
MRI:用于引力波探测器的大型光学晶体涂层表征仪器 (LOCCCI) 的第一轨开发
- 批准号:
2320711 - 财政年份:2023
- 资助金额:
$ 272.2万 - 项目类别:
Standard Grant
MRI: Track 1 Acquisition of a Multifunctional Thermal Analysis Instrument for Interdisciplinary Research and Research Training in Advanced Nanomaterial Development
MRI:轨道 1 采购多功能热分析仪器,用于先进纳米材料开发的跨学科研究和研究培训
- 批准号:
2320284 - 财政年份:2023
- 资助金额:
$ 272.2万 - 项目类别:
Standard Grant
MRI: Development of an Optical Super-resolution Instrument for Measuring Concentration Profiles and Diffusion Dynamics in Thin Films
MRI:开发用于测量薄膜中的浓度分布和扩散动力学的光学超分辨率仪器
- 批准号:
2215742 - 财政年份:2022
- 资助金额:
$ 272.2万 - 项目类别:
Standard Grant
MRI: Development of PARAGON: Control Instrument for Post NISQ Quantum Computing
MRI:PARAGON 的开发:用于后 NISQ 量子计算的控制仪器
- 批准号:
2216030 - 财政年份:2022
- 资助金额:
$ 272.2万 - 项目类别:
Standard Grant
MRI: Development of High-Confidence Medical Cyber-Physical System Research Instrument with Benchmark Security Software
MRI:使用基准安全软件开发高可信度医疗信息物理系统研究仪器
- 批准号:
2117785 - 财政年份:2021
- 资助金额:
$ 272.2万 - 项目类别:
Standard Grant
MRI: Development of a Sensors and Machine Learning Instrument Suite for Solar Array Monitoring
MRI:开发用于太阳能阵列监测的传感器和机器学习仪器套件
- 批准号:
2019068 - 财政年份:2020
- 资助金额:
$ 272.2万 - 项目类别:
Standard Grant
MRI: Development of a Co-Located Multi-User Immersive Display Instrument
MRI:开发同位多用户沉浸式显示仪器
- 批准号:
2051643 - 财政年份:2020
- 资助金额:
$ 272.2万 - 项目类别:
Standard Grant
MRI: Development of an Integrated Instrument for Testing Safety and Robustness of Robotic Co-Workers in Dynamic Environments
MRI:开发用于测试动态环境中机器人同事的安全性和鲁棒性的集成仪器
- 批准号:
2018905 - 财政年份:2020
- 资助金额:
$ 272.2万 - 项目类别:
Standard Grant
MRI: Development of a Molecular Beam Instrument for High Resolution Laser Spectroscopy and Quantum Control Studies of Molecular Systems
MRI:开发用于分子系统高分辨率激光光谱和量子控制研究的分子束仪器
- 批准号:
2018443 - 财政年份:2020
- 资助金额:
$ 272.2万 - 项目类别:
Standard Grant
MRI: Development of an Instrument for Student and Faculty Research on Multimodal Environmental Observations
MRI:开发用于学生和教师多模态环境观测研究的仪器
- 批准号:
2018611 - 财政年份:2020
- 资助金额:
$ 272.2万 - 项目类别:
Standard Grant