ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing

ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算

基本信息

  • 批准号:
    0427985
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-09-15 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

Abstract for Collaboration0427985, 0427464, 0427094,0427912,0427695A multidisciplinary team of researchers from Argonne NationalLaboratory, Carnegie Mellon University, Columbia University,University of Chicago, Emory University, and University ofPennsylvania, with collaborators from the Universities of Graz andLubek, will initiate a long term research project on image-driven,inversion-based biophysical modeling. The team includes expertise innumerical algorithms and scientific computing, fluid and solidbiomechanics, PDE optimization, inverse problems, medical imageanalysis and processing, and distributed and grid computing necessaryto tackle this class of problems.This project aims to create a framework for assimilating multimodaldynamic medical image data to produce highly-resolved,physically-realistic, patient-specific biomechanics models. While thecomputational and algorithmic aspects of the project are widelyapplicable, the target application will be the construction ofpatient-specific cardiac biomechanics models from 4D image datasets ofheart motion. Such models are useful for medical diagnosis andsurgical planning. This places a premium on quick turnaround of thecomputations, which mean they must be fast, scalable, and capable ofexploiting grid-based computing.Research will focus on three key areas that undergird the project'soverall goals: registration, inversion, and distributed computing. Theregistration research component will create multilevel algorithms toextract cardiac deformation histories from time-varying medical imagedatasets via the solution of sequences of 3D image registrationproblems. The inversion research component will develop multilevelalgorithms that use these deformation field histories as virtualobservations to solve inverse problems for cardiac biomechanicalparameters. The distributed computing research component will createtools for performance prediction and resource scheduling that supportsimulations across distributed computational resources.Dovetailing with the research components, the project will undertakean educational program designed to communicate the fruits of its workand of the wider benefits of the integration of the biomedicalsciences, computing sciences, and computational sciences, to a moregeneral audience of students, disciplinary researchers, and the laypublic. The professional activities of the team members in theinversion, image registration, grid computing, and computationalscience communities will be parlayed to organize workshops andinternational meetings, edit volumes, teach summer schools, developuniversity and short courses, and engage in outreach activities---asthey have done in the past---but with greater emphasis on the field ofcomputational biomedicine. The proposed image-based cardiacbiomechanics modeling application will provide an excellentopportunity to demonstrate the benefits to health and welfare thatadvances in optimization-based registration and inversion algorithmsand Grid computing can provide.
合作摘要0427985、0427464、0427094、0427912、0427695来自阿贡国家实验室、卡内基梅隆大学、哥伦比亚大学、芝加哥大学、埃默里大学和宾夕法尼亚大学的多学科研究人员团队与来自格拉兹大学和宾夕法尼亚大学的合作者卢贝克大学将启动一个关于图像驱动、基于反演的生物物理建模。该团队包括数值算法和科学计算,流体和固体生物力学,PDE优化,逆问题,医学图像分析和处理,以及解决这类问题所需的分布式和网格计算方面的专业知识。该项目旨在创建一个框架,用于吸收多模态动态医学图像数据,以产生高分辨率,物理逼真,患者特定的生物力学模型。虽然该项目的计算和算法方面是广泛适用的,但目标应用将是从心脏运动的4D图像数据集构建患者特定的心脏生物力学模型。这些模型对于医学诊断和手术计划是有用的。这就要求计算的快速周转,这意味着它们必须是快速的、可扩展的,并且能够利用基于网格的计算。研究将集中在支撑该项目所有目标的三个关键领域:注册、反演和分布式计算。配准研究组件将创建多级算法,通过解决3D图像配准问题序列,从时变医学图像数据集中提取心脏变形历史。反演研究部分将开发多级算法,使用这些变形场的历史作为虚拟观测来解决心脏生物力学参数的反演问题。分布式计算研究部分将提供性能预测和资源调度工具,支持跨分布式计算资源的模拟。与研究部分相配合,该项目将开展一项教育计划,旨在向更广泛的学生群体传达其工作成果以及生物医学科学、计算科学和计算科学整合的更广泛好处,学科研究人员和外行人。团队成员在反演、图像配准、网格计算和计算科学领域的专业活动将被用于组织研讨会和国际会议、编辑卷册、教授暑期学校、开发大学和短期课程,以及从事外展活动-拟议的基于图像的心脏生物力学建模应用程序将提供一个很好的机会,以证明健康和福利的好处,基于优化的配准和反演算法和网格计算的进步可以提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Omar Ghattas其他文献

Assessment of a fictitious domain method for patient-specific biomechanical modelling of press-fit orthopaedic implantation
评估用于压配骨科植入的患者特异性生物力学模型的虚拟域方法
Sensitivity Technologies for Large Scale Simulation
大规模仿真的灵敏度技术
  • DOI:
    10.2172/921606
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Collis;R. Bartlett;Thomas Michael Smith;Matthias Heinkenschloss;Lucas C. Wilcox;Judith C. Hill;Omar Ghattas;Martin Olof Berggren;V. Akçelik;C. Ober;B. van Bloemen Waanders;E. Keiter
  • 通讯作者:
    E. Keiter
Bayesian model calibration for diblock copolymer thin film self-assembly using power spectrum of microscopy data and machine learning surrogate
使用显微镜数据的功率谱和机器学习代理的二嵌段共聚物薄膜自组装的贝叶斯模型校准
Point Spread Function Approximation of High-Rank Hessians with Locally Supported Nonnegative Integral Kernels
具有局部支持的非负积分核的高阶 Hessian 矩阵的点扩散函数逼近
Real-time aerodynamic load estimation for hypersonics via strain-based inverse maps
通过基于应变的逆映射对高超音速进行实时气动载荷估计
  • DOI:
    10.2514/6.2024-1228
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Julie Pham;Omar Ghattas;Karen Willcox
  • 通讯作者:
    Karen Willcox

Omar Ghattas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Omar Ghattas', 18)}}的其他基金

OAC Core: The Best of Both Worlds: Deep Neural Operators as Preconditioners for Physics-Based Forward and Inverse Problems
OAC 核心:两全其美:深度神经算子作为基于物理的正向和逆向问题的预处理器
  • 批准号:
    2313033
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion
合作研究:SI2-SSI:不确定性下的数据与复杂预测模型的集成:大规模贝叶斯反演的可扩展软件框架
  • 批准号:
    1550593
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: A Bayesian inference/prediction/control framework for optimal management of CO2 sequestration
CDS
  • 批准号:
    1508713
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CDI Type II/Collaborative Research: Ultra-high Resolution Dynamic Earth Models through Joint Inversion of Seismic and Geodynamic Data
CDI II 型/合作研究:通过地震和地球动力学数据联合反演的超高分辨率动态地球模型
  • 批准号:
    1028889
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CDI-Type II: Dynamics of Ice Sheets: Advanced Simulation Models, Large-Scale Data Inversion, and Quantification of Uncertainty in Sea Level Rise Projections
CDI-Type II:冰盖动力学:高级模拟模型、大规模数据反演和海平面上升预测不确定性的量化
  • 批准号:
    0941678
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Model Integration and Joint Inversion for Large-Scale Multi-Modal Geophysical Data
CMG协同研究:大规模多模态地球物理数据模型集成与联合反演
  • 批准号:
    0724746
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding the Dynamics of the Earth: High-Resolution Mantle Convection Simulation on Petascale Computers
合作研究:了解地球动力学:千万亿级计算机上的高分辨率地幔对流模拟
  • 批准号:
    0749334
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Workshop on Large-Scale Inverse Problems and Quantification of Uncertainty
大规模反问题和不确定性量化研讨会
  • 批准号:
    0754077
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High Performance Computing System for Online Simulation
MRI:获取用于在线仿真的高性能计算系统
  • 批准号:
    0619838
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collabortive Research: DDDAS-TMRP: MIPS: A Real-Time Measurement-Inversion-Prediction-Steering Framework for Hazardous Events
合作研究:DDDAS-TMRP:MIPS:危险事件实时测量-反演-预测-引导框架
  • 批准号:
    0540372
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
  • 批准号:
    1404694
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR-SCOTUS: A Resource for Collaborative Research in Speech Technology, Linguistics, Decision Processes, and the Law
ITR-SCOTUS:语音技术、语言学、决策过程和法律合作研究的资源
  • 批准号:
    1139735
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    0963973
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    1018072
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR Collaborative Research: A Reusable, Extensible, Optimizing Back End
ITR 协作研究:可重用、可扩展、优化的后端
  • 批准号:
    0838899
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
  • 批准号:
    0833849
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
  • 批准号:
    0808419
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
  • 批准号:
    0849301
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
ITR: Collaborative Research: Modeling and Display of Haptic Information for Enhanced Performance of Computer-Integrated Surgery
ITR:协作研究:触觉信息建模和显示,以提高计算机集成手术的性能
  • 批准号:
    0711040
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ITR Collaborative Research: GEON: A Research Project to Create Cyberinfrastructure for the Geosciences
ITR 合作研究:GEON:为地球科学创建网络基础设施的研究项目
  • 批准号:
    0724265
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了