CDS&E: Collaborative Research: A Bayesian inference/prediction/control framework for optimal management of CO2 sequestration
CDS
基本信息
- 批准号:1508713
- 负责人:
- 金额:$ 14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2017-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1508713 (Ghattas) / 1507488 (Willcox)/ 1507009 (Stadler)The focus of the proposed work is on integrating research developments in scientific computing, statistical analysis, and numerical analysis to provide a common platform for managing CO2 storage. Results from this work will be important to energy production in the US, an area of National interest. Geological carbon storage faces two main challenges: the risk of inducing seismicity, and leakage of the injected CO2 into potable aquifers. The characterization of the injection site and continued monitoring of the CO2 migration as well as stress changes in the region of elevated pressure are therefore particularly important to maximize the amount of CO2 that can be stored, while ensuring the long term safety of storage sites. To address these challenges, the overall goal of the proposed research is to (1) integrate well pressure and, where available, surface deformation data into coupled poromechanics models by solving the inverse problem for unknown subsurface properties; (2) to quantify the uncertainty in the inversion for the subsurface properties, and (3) to use the resulting inferred poromechanics models together with their uncertainty to design optimal control strategies for well injection that optimize the amount of stored CO2 while controlling the risk of seismicity. It is essential that this poromechanics based inference/prediction/control framework takes into account uncertainties at every stage, since both the observational data and the models are uncertain. However, solving stochastic inverse/optimal control problems for large-scale PDE models, such as those of poromechanics, is intractable using current methods, which suffer from the "curse of dimensionality." Thus, it is proposed to overcome these barriers by developing scalable methods and algorithms that exploit the problem structure to reduce effective dimensionality. While the end application of CO2 storage is quite important in itself, the framework to be developed can be applicable to a broader set of science and engineering problems for which large-scale uncertain models must be inferred from large-scale uncertain data, and then used to solve optimal decision-making problems under uncertainty.
1508713(Ghattas)/ 1507488(威尔考克斯)/ 1507009(Stadler)拟议工作的重点是整合科学计算,统计分析和数值分析的研究发展,为管理CO2储存提供一个共同的平台。 这项工作的结果将对美国的能源生产至关重要,这是一个国家利益领域。地质碳储存面临两个主要挑战:诱发地震活动的风险,以及注入的二氧化碳泄漏到饮用水含水层。因此,注入地点的表征和CO2迁移的持续监测以及高压区域的应力变化对于最大化可储存的CO2量,同时确保储存地点的长期安全性特别重要。为了应对这些挑战,所提出的研究的总体目标是(1)通过求解未知地下性质的反问题,将井压和可用的地表变形数据集成到耦合孔隙力学模型中;(2)量化地下性质反演中的不确定性,以及(3)使用所得到的推断孔隙力学模型及其不确定性来设计用于井注入的最优控制策略,该最优控制策略在控制地震活动性的风险的同时优化储存的CO2的量。由于观测数据和模型都是不确定的,因此这种基于孔隙力学的推断/预测/控制框架必须考虑每个阶段的不确定性。然而,解决大规模PDE模型的随机逆/最优控制问题,如孔隙力学,是棘手的使用现有的方法,这遭受的“维数灾难”。“因此,建议通过开发可扩展的方法和算法来克服这些障碍,这些方法和算法利用问题结构来降低有效维度。虽然CO2封存的最终应用本身非常重要,但要开发的框架可以适用于更广泛的科学和工程问题,对于这些问题,必须从大规模不确定数据中推断出大规模不确定模型,然后用于解决不确定性下的最优决策问题。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling the poroelastic response to megathrust earthquakes: A look at the 2012 Mw 7.6 Costa Rican event
- DOI:10.1016/j.advwatres.2018.02.014
- 发表时间:2017-12
- 期刊:
- 影响因子:4.7
- 作者:K. Mccormack;M. Hesse
- 通讯作者:K. Mccormack;M. Hesse
A Data Scalable Augmented Lagrangian KKT Preconditioner for Large-Scale Inverse Problems
用于大规模反问题的数据可扩展增强拉格朗日 KKT 预处理器
- DOI:10.1137/16m1084365
- 发表时间:2017
- 期刊:
- 影响因子:3.1
- 作者:Alger, Nick;Villa, Umberto;Bui-Thanh, Tan;Ghattas, Omar
- 通讯作者:Ghattas, Omar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Omar Ghattas其他文献
Assessment of a fictitious domain method for patient-specific biomechanical modelling of press-fit orthopaedic implantation
评估用于压配骨科植入的患者特异性生物力学模型的虚拟域方法
- DOI:
10.1080/10255842.2010.545822 - 发表时间:
2012 - 期刊:
- 影响因子:1.6
- 作者:
L. Kallivokas;S. Na;Omar Ghattas;B. Jaramaz - 通讯作者:
B. Jaramaz
Sensitivity Technologies for Large Scale Simulation
大规模仿真的灵敏度技术
- DOI:
10.2172/921606 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S. Collis;R. Bartlett;Thomas Michael Smith;Matthias Heinkenschloss;Lucas C. Wilcox;Judith C. Hill;Omar Ghattas;Martin Olof Berggren;V. Akçelik;C. Ober;B. van Bloemen Waanders;E. Keiter - 通讯作者:
E. Keiter
Bayesian model calibration for diblock copolymer thin film self-assembly using power spectrum of microscopy data and machine learning surrogate
使用显微镜数据的功率谱和机器学习代理的二嵌段共聚物薄膜自组装的贝叶斯模型校准
- DOI:
10.1016/j.cma.2023.116349 - 发表时间:
2023-12-15 - 期刊:
- 影响因子:7.300
- 作者:
Lianghao Cao;Keyi Wu;J. Tinsley Oden;Peng Chen;Omar Ghattas - 通讯作者:
Omar Ghattas
Point Spread Function Approximation of High-Rank Hessians with Locally Supported Nonnegative Integral Kernels
具有局部支持的非负积分核的高阶 Hessian 矩阵的点扩散函数逼近
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.1
- 作者:
Nick Alger;Tucker Hartland;N. Petra;Omar Ghattas - 通讯作者:
Omar Ghattas
Real-time aerodynamic load estimation for hypersonics via strain-based inverse maps
通过基于应变的逆映射对高超音速进行实时气动载荷估计
- DOI:
10.2514/6.2024-1228 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Julie Pham;Omar Ghattas;Karen Willcox - 通讯作者:
Karen Willcox
Omar Ghattas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Omar Ghattas', 18)}}的其他基金
OAC Core: The Best of Both Worlds: Deep Neural Operators as Preconditioners for Physics-Based Forward and Inverse Problems
OAC 核心:两全其美:深度神经算子作为基于物理的正向和逆向问题的预处理器
- 批准号:
2313033 - 财政年份:2023
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion
合作研究:SI2-SSI:不确定性下的数据与复杂预测模型的集成:大规模贝叶斯反演的可扩展软件框架
- 批准号:
1550593 - 财政年份:2016
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
CDI Type II/Collaborative Research: Ultra-high Resolution Dynamic Earth Models through Joint Inversion of Seismic and Geodynamic Data
CDI II 型/合作研究:通过地震和地球动力学数据联合反演的超高分辨率动态地球模型
- 批准号:
1028889 - 财政年份:2010
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
CDI-Type II: Dynamics of Ice Sheets: Advanced Simulation Models, Large-Scale Data Inversion, and Quantification of Uncertainty in Sea Level Rise Projections
CDI-Type II:冰盖动力学:高级模拟模型、大规模数据反演和海平面上升预测不确定性的量化
- 批准号:
0941678 - 财政年份:2009
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
CMG Collaborative Research: Model Integration and Joint Inversion for Large-Scale Multi-Modal Geophysical Data
CMG协同研究:大规模多模态地球物理数据模型集成与联合反演
- 批准号:
0724746 - 财政年份:2007
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Dynamics of the Earth: High-Resolution Mantle Convection Simulation on Petascale Computers
合作研究:了解地球动力学:千万亿级计算机上的高分辨率地幔对流模拟
- 批准号:
0749334 - 财政年份:2007
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Workshop on Large-Scale Inverse Problems and Quantification of Uncertainty
大规模反问题和不确定性量化研讨会
- 批准号:
0754077 - 财政年份:2007
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
MRI: Acquisition of a High Performance Computing System for Online Simulation
MRI:获取用于在线仿真的高性能计算系统
- 批准号:
0619838 - 财政年份:2006
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collabortive Research: DDDAS-TMRP: MIPS: A Real-Time Measurement-Inversion-Prediction-Steering Framework for Hazardous Events
合作研究:DDDAS-TMRP:MIPS:危险事件实时测量-反演-预测-引导框架
- 批准号:
0540372 - 财政年份:2005
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
- 批准号:
0427985 - 财政年份:2004
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
- 批准号:
2319097 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
- 批准号:
2319848 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant