SST: GOALI: MIMO Techniques for Remote Sensing of Physiological Motion

SST:GOALI:生理运动遥感的 MIMO 技术

基本信息

  • 批准号:
    0428975
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-04-15 至 2009-03-31
  • 项目状态:
    已结题

项目摘要

A means for unobtrusive and ubiquitous detection and monitoring of heart and respiration activity from a distance could be a powerful tool for health care, emergency, and surveillance applications, yet remains a largely unrealized goal. Without contact or subject preparation (special clothing, attachments, etc.), this could better extend health monitoring to the chronically ill in routine life, allow wellness monitoring for a large population without known predisposition for risk or harm, and provide alarm and data in emergencies. Such technology could also be used to detect lost or hidden subjects, to help assess emotional state, and to compliment more cumbersome measurements as pre-screening. Doppler radar remote sensing of vital signs has shown promise to this end, with proof of concept demonstrated for various applications by the UHM PI.s and others. Unfortunately, this principle has not been developed to the level of practical application, mainly due to a lack of an effective way to isolate desired target motion from interference. However, by leveraging recent advances in signal processing and wireless communications technologies, this technique has the potential to transcend mere novelty and make a profound impact on health and welfare in society. We propose to explore robust radar monitoring techniques by isolating desired radar return signals from unwanted motion through recent developments in multiple input multiple output (MIMO) signal processing techniques, developed to enhance wireless communications channel capacity through constructive use of multipath phenomenon. The approach would involve three primary areas of research: (1) development of spatial-frequency algorithms for single and multiple source radar, (2) active radar system implementation using wireless terminals and/or silicon radar chips, and (3) development of an effective .pseudo-passive. sensing system where radio signals in the environment are harnessed for radar monitoring without control or specification of the signal source. The project will culminate with the demonstration of robust Doppler radar MIMO system capable of isolating and determining the number of subjects in the monitoring field, and measuring their heart and respiration rates. Intellectual Merit: The proposed three-year collaborative research effort between the University of Hawaii at Manoa (UHM) and Bell laboratories (BL) would explore techniques for making non-contact Doppler radar sensing of cardiopulmonary activity a practical alternative or supplement to more cumbersome and invasive technologies that necessarily limit application. Recent work by the UHM PI and one Co-PI (Lubecke) to implement Doppler sensing by leveraging telecommunications technology, including the detection of heart and respiration signatures with wireless terminals, has attracted international attention for its potential. The second UHM Co-PI (Host-Madsen) is an established expert in statistical and communications signal processing with numerous publications in multi-user detection, estimation theory, and adaptive signal processing. The industry partner, BL, is widely considered the leader in the field of MIMO and other wireless systems technology. In related work, graduate students working with the PI have won three student paper competition awards in major IEEE MTT and EMB conferences. Broader Impact: The outcomes of this project can lead to valuable tools beneficial for society in the areas of health care, emergency response, military, and security operations. The research would present a particularly motivating educational opportunity that leverages Hawaii.s unique needs for remote healthcare tools, and reaches out to a diverse population of ethnic minority students that have been historically underserved by local educational and industrial opportunities. Thus, an important aspect of this program will be interactions of UHM students with BL industrial co-advisors, involving extended periods of training in the highly relevant fields of communications and bio-sensing engineering, beyond the limits of the University (and Hawaii), at BL in a world-class research environment. The partnership established will allow UHM students and faculty to complement UHM resources by leveraging BL.s considerable expertise and facilities without charge, including a broad range of wireless test systems.
一种从远处对心脏和呼吸活动进行不显眼和无处不在的检测和监测的方法可能是医疗保健、紧急情况和监视应用的强大工具,但这在很大程度上仍然是一个未实现的目标。无需接触或受试者准备(特殊服装、附件等), 这可以更好地将健康监测扩展到日常生活中的慢性病患者,允许对没有已知风险或伤害倾向的大量人口进行健康监测,并在紧急情况下提供警报和数据。这种技术还可以用来检测丢失或隐藏的主题,帮助评估情绪状态,并补充更繁琐的测量作为预筛选。 生命体征的多普勒雷达遥感已显示出这方面的前景,UHM PI.s和其他人证明了各种应用的概念证明。遗憾的是,这一原理尚未发展到实际应用的水平,主要是由于缺乏有效的方法来隔离所需的目标运动的干扰。 然而,通过利用信号处理和无线通信技术的最新进展,这项技术有可能超越单纯的新奇,并对社会的健康和福利产生深远的影响。 我们建议探索强大的雷达监测技术,通过隔离所需的雷达回波信号从不必要的运动,通过最近的发展,在多输入多输出(MIMO)信号处理技术,开发,以提高无线通信信道容量,通过建设性地使用多径现象。该方法将涉及三个主要研究领域:(1)开发单源和多源雷达的空间频率算法,(2)使用无线终端和/或硅雷达芯片的有源雷达系统实现,以及(3)开发有效的伪无源。传感系统,利用环境中的无线电信号进行雷达监测,而无需控制或指定信号源。 该项目将以演示强大的多普勒雷达MIMO系统为高潮,该系统能够隔离和确定监测场中的受试者数量,并测量他们的心率和呼吸率。 智力优势:拟议的三年合作研究工作之间的夏威夷大学马诺阿(UHM)和贝尔实验室(BL)将探索技术,使非接触多普勒雷达感测心肺活动的一个实际的替代或补充,更繁琐和侵入性的技术,必然限制应用。 UHM PI和一个Co-PI(Lubecke)最近通过利用电信技术(包括使用无线终端检测心脏和呼吸特征)实现多普勒传感的工作因其潜力而引起了国际关注。 第二位UHM Co-PI(Host-Madsen)是统计和通信信号处理方面的专家,在多用户检测,估计理论和自适应信号处理方面发表了大量文章。业界合作伙伴BL被广泛认为是MIMO和其他无线系统技术领域的领导者。 在相关工作中,与PI合作的研究生在主要的IEEE MTT和EMB会议上获得了三个学生论文竞赛奖。 更广泛的影响:该项目的成果可以在医疗保健、应急响应、军事和安全行动等领域为社会带来有益的宝贵工具。 这项研究将提出一个特别激励的教育机会,利用夏威夷对远程医疗工具的独特需求,并接触到历史上一直缺乏当地教育和工业机会的少数民族学生的多样化人口。 因此,该计划的一个重要方面将是UHM学生与BL工业共同顾问的互动,涉及通信和生物传感工程高度相关领域的长期培训,超出了大学(和夏威夷)的限制,在BL世界一流的研究环境中。建立的合作伙伴关系将使UHM的学生和教师能够通过利用BL的大量专业知识和设施来补充UHM的资源,包括广泛的无线测试系统。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olga Boric-Lubecke其他文献

Olga Boric-Lubecke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Olga Boric-Lubecke', 18)}}的其他基金

Collaborative Research: CPS: TTP Option: Medium: i-HEAR: immersive Human-On-the-Loop Environmental Adaptation for Stress Reduction
合作研究:CPS:TTP 选项:中:i-HEAR:沉浸式人类循环环境适应以减轻压力
  • 批准号:
    2039089
  • 财政年份:
    2021
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Robust Physiological Signal Extraction using High Precision Hardware and Personalized Signal Processing
使用高精度硬件和个性化信号处理进行稳健的生理信号提取
  • 批准号:
    0926076
  • 财政年份:
    2009
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似海外基金

GOALI: Understanding granulation using microbial resource management for the broader application of granular technology
目标:利用微生物资源管理了解颗粒化,以实现颗粒技术的更广泛应用
  • 批准号:
    2227366
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
GOALI: Development of Next Generation MXene-based Li-S Batteries with Practical Operating Temperatures
GOALI:开发具有实用工作温度的下一代 MXene 基锂硫电池
  • 批准号:
    2427203
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
GOALI: Understanding Tribological Properties of Thermally-Synthesized Carbon
目标:了解热合成碳的摩擦学特性
  • 批准号:
    2315343
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes
目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响
  • 批准号:
    2328678
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
GOALI: Integrated Design and Operability Optimization of Industrial-Scale Modular Intensified Systems
GOALI:工业规模模块化强化系统的集成设计和可操作性优化
  • 批准号:
    2401564
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
CPS: Medium: GOALI: Enabling Safe Innovation for Autonomy: Making Publish/Subscribe Really Real-Time
CPS:中:GOALI:实现自主安全创新:使发布/订阅真正实时
  • 批准号:
    2333120
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
GOALI: Fundamental Investigation of Constrained Cutting for High Performance Machining of Difficult-to-Cut Materials
GOALI:难切削材料高性能加工约束切削的基础研究
  • 批准号:
    2323120
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
GOALI: Frameworks: At-Scale Heterogeneous Data based Adaptive Development Platform for Machine-Learning Models for Material and Chemical Discovery
GOALI:框架:基于大规模异构数据的自适应开发平台,用于材料和化学发现的机器学习模型
  • 批准号:
    2311632
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
GOALI: ASCENT: Online Stability Assessment, Flexibility, and Enhancement of IBR-dominated Power Systems
目标:ASCENT:IBR 主导电力系统的在线稳定性评估、灵活性和增强
  • 批准号:
    2328248
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
LEAP-HI: GOALI: Accelerating Design for Additive Manufacturing of Smart Multimaterial Devices
LEAP-HI:GOALI:加速智能多材料设备增材制造的设计
  • 批准号:
    2401218
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了