GOALI: Fundamental Investigation of Constrained Cutting for High Performance Machining of Difficult-to-Cut Materials

GOALI:难切削材料高性能加工约束切削的基础研究

基本信息

  • 批准号:
    2323120
  • 负责人:
  • 金额:
    $ 63.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

This Grant Opportunity for Academic Liaison with Industry (GOALI) award supports fundamental research on a novel metal cutting method for enhancing the efficiency of machining difficult-to-cut materials. Difficult-to-cut materials have poor machinability in typical machining conditions requiring higher cutting forces, and resulting in higher temperatures, shorter tool life, and poor surface finish. These cutting difficulties are fundamentally attributed to the difficult chip formation characteristics of difficult-to-cut materials and the lack of conventional cutting’s ability to control chip formation. The new cutting method uses a constraining tool in addition to a cutting tool to enable direct control of chip formation during the cutting process. This allows the chip formation characteristics to be optimized, which leads to efficient material removal with lower cutting forces, resulting in longer tool-life, improved surface integrity, and higher material removal rates. The constrained cutting method significantly benefits U.S. manufacturing industries, such as automotive, aerospace and energy, where difficult-to-cut materials are heavily used. Close collaboration with a partner from the U.S. cutting tool industry ensures technology transfer to develop next generation cutting tools and machining strategies. The project generates a well-trained workforce for advanced manufacturing and engineering through the involvement of graduate and under-graduate students, particularly, women and under-represented minorities, in research and education.The research focus of this project is to investigate how geometrically constraining the shear deformation zone affects the mechanics, dynamics, and generated surface integrity of machining processes. Conventional metal cutting processes lack direct control of chip formation. Controlling the shear deformation zone by an additional constraining tool can lead to reduced cutting effort, dramatically improved surface integrity and machining stability. Chip deformation during constrained cutting is analyzed experimentally through in-situ digital imaging and by analytical and computational modelling to understand the fundamental relationship between constraining parameters (location and geometry) and cutting effort (force, energy, and temperature). Constraining the shear deformation zone reduces plastic deformation and thermomechanical loads. This improves surface finish, enhances microstructure, and reduces residual stress. Experimental characterization and correlation with deformation and temperature analysis generate the new knowledge to enable better control of the integrity of the generated surfaces. The effect of constraining tool on the coupled dynamics of the process and the machining equipment is also investigated, which leads to new designs of constraining tool geometries to control and suppress high-frequency self-excited chatter instabilities during machining. This allows machining of precision parts at significantly higher depth, feed and speed leading to greater material removal rates and superior surface finish.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个学术与工业联络奖(GOALI)的资助机会支持一种新的金属切削方法的基础研究,以提高加工难切削材料的效率。难以切割的材料在需要更高切割力的典型加工条件下可加工性较差,从而导致温度更高、刀具寿命更短和表面光洁度较差。这些切削困难从根本上归因于难切削材料的难切屑形成特性和常规切削控制切屑形成能力的缺乏。新的切削方法除了使用切削刀具外还使用约束刀具,以在切削过程中直接控制切屑的形成。这使得切屑形成特性得以优化,从而以较低的切削力实现有效的材料去除,从而延长刀具寿命,改善表面完整性,并提高材料去除率。这种受限切割方法使美国制造业受益匪浅,例如汽车、航空航天和能源,这些行业大量使用难以切割的材料。与美国刀具行业的合作伙伴密切合作,确保技术转让,以开发下一代刀具和加工策略。该项目通过研究生和本科生,特别是女性和代表性不足的少数民族学生参与研究和教育,为先进制造和工程培养训练有素的劳动力。该项目的研究重点是调查几何约束剪切变形区如何影响机械加工过程的力学,动力学和生成的表面完整性。传统的金属切削工艺缺乏对切屑形成的直接控制。通过附加约束工具控制剪切变形区可以减少切削工作量,显著改善表面完整性和加工稳定性。约束切削过程中的切屑变形进行了实验分析,通过原位数字成像和分析和计算建模,以了解约束参数(位置和几何形状)和切削力(力,能量和温度)之间的基本关系。约束剪切变形区减少了塑性变形和热机械载荷。这改善了表面光洁度,增强了微观结构,并降低了残余应力。实验表征以及与变形和温度分析的相关性产生了新的知识,从而能够更好地控制生成表面的完整性。约束工具的过程和加工设备的耦合动力学的影响也进行了研究,这导致新的设计约束工具的几何形状,以控制和抑制高频自激颤振不稳定性加工过程中。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Burak Sencer其他文献

Development of a Chip Pulling System for Efficient Turning
  • DOI:
    10.1016/j.procir.2014.03.092
  • 发表时间:
    2014-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Burak Sencer;Tomoya Aoki;Eiji Shamoto;Takumi Hasegawa;Tomio Koide
  • 通讯作者:
    Tomio Koide
Novel deconvolution based feedrate scheduling towards a new class of CAM for time-dependent processes
基于新型反卷积的进给率调度,针对时间相关过程的新型 CAM
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuntaro Yamato;Burak Sencer;Anthony Beaucamp
  • 通讯作者:
    Anthony Beaucamp
Accurate prediction of machining cycle times by data-driven modelling of NC system's interpolation dynamics
  • DOI:
    10.1016/j.cirp.2022.04.017
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Masafumi Endo;Burak Sencer
  • 通讯作者:
    Burak Sencer
Adaptive Torque Ripple Compensation Technique Based on the Variable Structure Control and its Applications to Gear Driven Motion Systems
基于变结构控制的自适应扭矩脉动补偿技术及其在齿轮传动运动系统中的应用
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Burak Sencer;Eiji Shamoto
  • 通讯作者:
    Eiji Shamoto
A Sliding Made Controller Design for Position Synchronization of Dual Spindle Servo Systems
双主轴伺服系统位置同步的滑动控制器设计
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Burak Sencer;Eiji Shamoto
  • 通讯作者:
    Eiji Shamoto

Burak Sencer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Burak Sencer', 18)}}的其他基金

GOALI/Collaborative Research: Mechanics and Dynamics of Low Frequency Vibration Assisted Machining
GOALI/合作研究:低频振动辅助加工的力学和动力学
  • 批准号:
    2019370
  • 财政年份:
    2020
  • 资助金额:
    $ 63.07万
  • 项目类别:
    Standard Grant
GOALI: Mechanics and Dynamics of Machining with Applied Chip Tension
目标:应用切屑张力的加工力学和动力学
  • 批准号:
    1661926
  • 财政年份:
    2017
  • 资助金额:
    $ 63.07万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Fundamental investigation of twin boundary engineering through cyclic cross-phase-boundary thermomechanical processing
职业:通过循环跨相边界热机械加工对孪晶边界工程进行基础研究
  • 批准号:
    2240125
  • 财政年份:
    2023
  • 资助金额:
    $ 63.07万
  • 项目类别:
    Continuing Grant
Electrophysiological Investigation of the Fundamental Neural Signature of Empathic Processing
共情处理的基本神经特征的电生理学研究
  • 批准号:
    569559-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 63.07万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
ERI: A Fundamental Investigation of the Effectiveness of Cathode Regeneration Process for Spent Lithium Ion Batteries
ERI:废旧锂离子电池阴极再生过程有效性的基础研究
  • 批准号:
    2138553
  • 财政年份:
    2022
  • 资助金额:
    $ 63.07万
  • 项目类别:
    Standard Grant
Fundamental Investigation of Novel Bark-Based Lignocellulosic Nanofibrils for Composite Applications
用于复合材料应用的新型树皮木质纤维素纳米原纤维的基础研究
  • 批准号:
    RGPIN-2017-06737
  • 财政年份:
    2022
  • 资助金额:
    $ 63.07万
  • 项目类别:
    Discovery Grants Program - Individual
Fundamental investigation into Japanese language education for the equal participation of linguistic and cultural minorities in Japanese society
为促进语言和文化少数群体平等参与日本社会而进行的日语教育的基础调查
  • 批准号:
    22K00666
  • 财政年份:
    2022
  • 资助金额:
    $ 63.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Fundamental Investigation of the Wave Nature of Lattice Thermal Transport
职业:晶格热传输波性质的基础研究
  • 批准号:
    2047109
  • 财政年份:
    2021
  • 资助金额:
    $ 63.07万
  • 项目类别:
    Continuing Grant
Investigation of fundamental properties of intermetallic compounds for novel interconnection materials
新型互连材料金属间化合物基本性质的研究
  • 批准号:
    21H04605
  • 财政年份:
    2021
  • 资助金额:
    $ 63.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Fundamental Investigation of Novel Bark-Based Lignocellulosic Nanofibrils for Composite Applications
用于复合材料应用的新型树皮木质纤维素纳米原纤维的基础研究
  • 批准号:
    RGPIN-2017-06737
  • 财政年份:
    2021
  • 资助金额:
    $ 63.07万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation into the Fundamental Structure, Bonding, and Reactivity of Compounds Featuring Terminal Pnictogen-Pnictogen Multiple Bonds
研究具有末端磷元素-磷元素多重键的化合物的基本结构、成键和反应性
  • 批准号:
    546014-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 63.07万
  • 项目类别:
    Postdoctoral Fellowships
Cellular Backpacks: A fundamental investigation of cell-material interactions.
细胞背包:细胞与材料相互作用的基础研究。
  • 批准号:
    2138064
  • 财政年份:
    2021
  • 资助金额:
    $ 63.07万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了