Cloud Modeling and Probability Density Functions

云建模和概率密度函数

基本信息

  • 批准号:
    0442605
  • 负责人:
  • 金额:
    $ 28.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-01-01 至 2007-12-31
  • 项目状态:
    已结题

项目摘要

Large-scale numerical models of the atmosphere include parameterizations of microphysical and radiative processes. Such parameterizations require accurate input in the form of grid-resolved fields such as liquid water content, ice water content, and droplet number concentration. These fields are produced by host model equations. Some mesoscale models prognose liquid water using the assumption that there is no thermodynamic variability on scales smaller than the grid box size. This assumption is incompatible with cloud schemes that predict subgrid-scale cloud fraction or any other thermodynamic subgrid variability.In this research, the Principal Investigator seeks to improve the formulation and accuracy of host model equations for liquid, ice, and droplet number that drive microphysics and radiative parameterizations. To improve them, he will investigate the effects of subgrid variability.A principal object of study is the probability density function (PDF) of relevant quantities, such as total water content. Specifically, the PI will (1) use mathematical properties of the relevant PDF to rigorously derive large-scale equations for liquid water content, ice water content, and droplet number concentration; (2) analyze aircraft data to ascertain the shapes of joint PDFs of liquid and ice, and then use the PDFs to close the host model equations; and (3) implement the host model equations in an idealized one-dimensional cloud parameterization.The intellectual merit is twofold: (1) to improve understanding of mixed-phase clouds; and (2) to improve representation of clouds in atmospheric numerical models. If successful, the research may ultimately have implications for cloud parameterizations ranging from simple bulk microphysics schemes to bin microphysics schemes, and for models ranging from general circulation models to cloud resolving models.The research will have two broader impacts: it will help train a postdoctoral research associate, and its results will be made widely available to the scientific community through journal publications and the internet.
大气的大尺度数值模式包括微物理和辐射过程的参数化。 这样的参数化需要以网格解析字段的形式精确输入,例如液态水含量、冰水含量和液滴数量浓度。 这些场由主体模型方程产生。 一些中尺度模式假设在小于网格尺寸的尺度上没有热力学变率,以此来模拟液态水。 这一假设是不兼容的云计划,预测次网格尺度云分数或任何其他热力学次网格variability.In这项研究中,首席研究员试图提高主机模型方程的液体,冰和液滴数,驱动微物理和辐射参数化的制定和准确性。 为了改进它们,他将研究次网格可变性的影响。一个主要的研究对象是相关量的概率密度函数(PDF),如总含水量。 具体来说,PI将(1)利用相关PDF的数学特性,严格推导出液态水含量、冰水含量和液滴数浓度的大规模方程;(2)分析飞机数据,确定液体和冰的联合PDF形状,然后利用PDF闭合主模型方程;(3)在理想化的一维云参数化中实现主模式方程。其智力价值有两个方面:(1)提高对混合相云的理解;(2)提高大气数值模式中云的表示。 如果成功的话,这项研究最终可能会对云参数化产生影响,从简单的体微物理方案到箱微物理方案,以及从大气环流模型到云解析模型。这项研究将产生两个更广泛的影响:它将有助于培养一名博士后研究助理,其结果将通过期刊出版物和互联网广泛提供给科学界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vincent Larson其他文献

Low-Cloud Feedback in CAM5-CLUBB: Physical Mechanisms and Parameter Sensitivity Analysis
CAM5-CLUBB 中的低云反馈:物理机制和参数敏感性分析
  • DOI:
    10.1029/2018ms001423
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Haipeng Zhang;Minghuai Wang;Zhun Guo;Chen Zhou;Tianjun Zhou;Yun Qian;Vincent Larson;Steven Ghan;Mikhail Ovchinnikov;Peter Bogenschutz;Andrew Gettelman
  • 通讯作者:
    Andrew Gettelman

Vincent Larson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vincent Larson', 18)}}的其他基金

Effects of Turbulent Dissipation and Pressure Perturbations on Clouds
湍流耗散和压力扰动对云的影响
  • 批准号:
    1561996
  • 财政年份:
    2016
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: Cloud Macrophysical Parameterization and Its Application to Aerosol Indirect Effects
合作研究:云宏观物理参数化及其在气溶胶间接效应中的应用
  • 批准号:
    0968640
  • 财政年份:
    2010
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Continuing Grant
A Physics Coupler for Climate Models
气候模型的物理耦合器
  • 批准号:
    0936186
  • 财政年份:
    2009
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Standard Grant
Connecting Vertical Velocity and Microphysics at the Subgrid Scale in General Circulation Models (GCMs)
在大气环流模型 (GCM) 中连接亚网格尺度的垂直速度和微观物理
  • 批准号:
    0618818
  • 财政年份:
    2006
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Continuing Grant
Dynamics of Altocumulus Clouds
高积云的动力学
  • 批准号:
    0239982
  • 财政年份:
    2003
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Continuing Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Modeling the dynamics of belief formation: Towards a computational understanding of the timing and accuracy of probability judgments
对信念形成的动态进行建模:对概率判断的时间和准确性进行计算理解
  • 批准号:
    2350258
  • 财政年份:
    2023
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Continuing Grant
RUI: Neutron Star Crusts in Multi-Messenger Astronomy: Probability Distributions of Ground State and Accreted Crusts with Rigorously Quantified Modeling Uncertainty.
RUI:多信使天文学中的中子星地壳:具有严格量化建模不确定性的基态和吸积地壳的概率分布。
  • 批准号:
    2209536
  • 财政年份:
    2022
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Standard Grant
Modeling the dynamics of belief formation: Towards a computational understanding of the timing and accuracy of probability judgments
对信念形成的动态进行建模:对概率判断的时间和准确性进行计算理解
  • 批准号:
    2121122
  • 财政年份:
    2021
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Continuing Grant
Learning Based Probability Modeling for Efficient Image Coding
基于学习的概率建模实现高效图像编码
  • 批准号:
    17K00247
  • 财政年份:
    2017
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bridging across mathematical analysis, probability and materials mechanics for a better modeling of martensitic microstructure and defects.
跨越数学分析、概率和材料力学,更好地建模马氏体微观结构和缺陷。
  • 批准号:
    16K21213
  • 财政年份:
    2016
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Assessment of probability of contemporary abrupt climate change based on examination of abrupt change in past paleoclimate records and modeling of feedback effects in present day climate system.
基于对过去古气候记录突变的检查和对当今气候系统反馈效应的建模,评估当代气候突变的概率。
  • 批准号:
    409901-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: Applied Probability and Time Series Modeling
合作研究:应用概率和时间序列建模
  • 批准号:
    1238351
  • 财政年份:
    2012
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: Applied Probability and Time Series Modeling
合作研究:应用概率和时间序列建模
  • 批准号:
    1107031
  • 财政年份:
    2011
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: Applied Probability and Time Series Modeling
合作研究:应用概率和时间序列建模
  • 批准号:
    1106814
  • 财政年份:
    2011
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Continuing Grant
Assessment of probability of contemporary abrupt climate change based on examination of abrupt change in past paleoclimate records and modeling of feedback effects in present day climate system.
基于对过去古气候记录突变的检查和对当今气候系统反馈效应的建模,评估当代气候突变的概率。
  • 批准号:
    409901-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 28.46万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了