Collaborative Research: Applied Probability and Time Series Modeling

合作研究:应用概率和时间序列建模

基本信息

  • 批准号:
    1106814
  • 负责人:
  • 金额:
    $ 9.72万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2012-04-30
  • 项目状态:
    已结题

项目摘要

An investigation of the properties of Levy-driven CARMA (continuous-time ARMA) processes will be undertaken and efficient methods of inference developed. The results will be applied to the study of stochastic volatility models with Levy-driven CARMA volatility that have applications that go beyond finance to turbulence and some neuroscience processes. Time series in which the parameters are constant over time-intervals between change-points constitute an important class of non-stationary time series which has been found particularly useful in hydrology, seismology, neuroscience, environmental science and finance. Properties and applications of a new estimation technique based on the minimization of the minimum description length of a model that includes the number of change-points and their locations as parameters will be developed and extended to cover a general class of processes with structural breaks. It is hoped that this technique can also be adapted for detection of both additive and innovational outliers. Linear and nonlinear models for multivariate time series, with a view towards modeling temporal brain dynamics, will also play a major role in this research proposal. These models include a mixture of possibly nonlinear vector autoregressions and a class of not necessarily causal vector autoregressions. The latter class, although linear, exhibits features previously only associated with nonlinear models and allows for the possibility of foresight in the sense of dependence of one or more components of future shocks. In the last fifteen years, there has been a widely-recognized need for the development of new models and techniques for the analysis of time series data from scientific, engineering, biomedical, financial, and neuroscience applications. Some of the features required of these new models are nonlinearity, complex dependence structures, strong deviations from normality and non-stationarity. In neuroscience, environmental and financial modeling there is also a demand for continuous-time models which incorporate these features. The current proposal addresses these needs. It seeks to enhance understanding of the physical, biomedical, and economic processes represented by the models. The development of efficient estimation and simulation techniques will be an essential component of the research.
Levy驱动的CARMA(连续时间阿尔马)过程的性质的调查将进行和有效的推理方法的发展。研究结果将被应用于随机波动模型与利维驱动的CARMA波动,有超越金融动荡和一些神经科学过程的应用程序的研究。在变点之间的时间间隔上参数恒定的时间序列构成了一类重要的非平稳时间序列,在水文学、地震学、神经科学、环境科学和金融学中特别有用。一种新的估计技术的基础上的最小化的最小描述长度的模型,包括变点的数量和它们的位置作为参数的属性和应用程序将被开发和扩展,以涵盖一般类的过程与结构突变。希望这种技术也可以适用于检测添加剂和创新的离群值。多元时间序列的线性和非线性模型,以模拟时间大脑动力学,也将在这项研究中发挥重要作用。这些模型包括可能的非线性向量自回归和一类不一定是因果向量自回归的混合。后一类虽然是线性的,但表现出以前只与非线性模型有关的特征,并允许在未来冲击的一个或多个组成部分的依赖性意义上进行预见。在过去的15年里,人们广泛认识到需要开发新的模型和技术,用于分析来自科学、工程、生物医学、金融和神经科学应用的时间序列数据。这些新模型所需的一些功能是非线性,复杂的依赖结构,从正常和非平稳性的强烈偏差。在神经科学、环境和金融建模中,也需要包含这些特征的连续时间模型。目前的建议满足了这些需要。它旨在加强对模型所代表的物理,生物医学和经济过程的理解。有效的估计和模拟技术的发展将是研究的一个重要组成部分。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hernando Ombao其他文献

Analysis of experiments with high frequency time series responses and the implications for power and sample size
高频时间序列响应实验分析及其对功效和样本量的影响
  • DOI:
    10.1038/s41598-025-00554-w
  • 发表时间:
    2025-05-14
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Brian Rafor;Iris Ivy Gauran;Hernando Ombao;Joseph Ryan Lansangan;Erniel Barrios
  • 通讯作者:
    Erniel Barrios

Hernando Ombao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hernando Ombao', 18)}}的其他基金

Developing Novel Statistical Methods in NeuroImaging
开发神经影像领域的新型统计方法
  • 批准号:
    1231069
  • 财政年份:
    2012
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Applied Probability and Time Series Modeling
合作研究:应用概率和时间序列建模
  • 批准号:
    1238351
  • 财政年份:
    2012
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: Models and Methods for Nonstationary Behavioral Time Series
合作研究:非平稳行为时间序列的模型和方法
  • 批准号:
    1227745
  • 财政年份:
    2012
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Models and Methods for Nonstationary Behavioral Time Series
合作研究:非平稳行为时间序列的模型和方法
  • 批准号:
    1060937
  • 财政年份:
    2011
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Collaborative Research: Spectral and Connectivity Analysis of Non-Stationary Spatio-Temporal Data
合作研究:非平稳时空数据的谱和连通性分析
  • 批准号:
    0806106
  • 财政年份:
    2008
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Localized Cross Spectral Analysis and Pattern Recognition Methods for Non-Stationary Signals
非平稳信号的局部互谱分析和模式识别方法
  • 批准号:
    0813827
  • 财政年份:
    2007
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Collaborative Research: The Analysis of Time Series Collected in Experimental Designs
协作研究:实验设计中收集的时间序列分析
  • 批准号:
    0753787
  • 财政年份:
    2007
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Collaborative Research: The Analysis of Time Series Collected in Experimental Designs
协作研究:实验设计中收集的时间序列分析
  • 批准号:
    0706709
  • 财政年份:
    2007
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Localized Cross Spectral Analysis and Pattern Recognition Methods for Non-Stationary Signals
非平稳信号的局部互谱分析和模式识别方法
  • 批准号:
    0405243
  • 财政年份:
    2004
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2426728
  • 财政年份:
    2024
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Collaborative Research: IMR:MM-1B: Privacy in Internet Measurements Applied To WAN and Telematics
合作研究:IMR:MM-1B:应用于广域网和远程信息处理的互联网测量隐私
  • 批准号:
    2319409
  • 财政年份:
    2023
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2245405
  • 财政年份:
    2023
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Collaborative Research: IMR:MM-1B: Privacy in Internet Measurements Applied To WAN and Telematics
合作研究:IMR:MM-1B:应用于广域网和远程信息处理的互联网测量隐私
  • 批准号:
    2319410
  • 财政年份:
    2023
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
  • 批准号:
    2245406
  • 财政年份:
    2023
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
IRES Track I: Collaborative Research: Interdisciplinary Research in Korea on Applied Smart Systems (IRiKA) for Undergraduate Students
IRES Track I:合作研究:韩国本科生应用智能系统跨学科研究 (IRiKA)
  • 批准号:
    2311700
  • 财政年份:
    2023
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Collaborative Research: New perspectives from applied and computational time-frequency analysis
合作研究:应用和计算时频分析的新视角
  • 批准号:
    2309652
  • 财政年份:
    2023
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Collaborative Research: New perspectives from applied and computational time-frequency analysis
合作研究:应用和计算时频分析的新视角
  • 批准号:
    2309651
  • 财政年份:
    2023
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: RUI: Applied Cryptographic Protocols with Provably-Secure Foundations
协作研究:SaTC:核心:中:RUI:具有可证明安全基础的应用密码协议
  • 批准号:
    2149766
  • 财政年份:
    2022
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Applied Cryptographic Protocols with Provably-Secure Foundations
合作研究:SaTC:核心:中:具有可证明安全基础的应用密码协议
  • 批准号:
    2149765
  • 财政年份:
    2022
  • 资助金额:
    $ 9.72万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了