Collaborative Research: Performance Toolset for Dynamic Optimization of High-End Hybrid Applications
协作研究:用于高端混合应用动态优化的性能工具集
基本信息
- 批准号:0444319
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-11-01 至 2008-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Current high-end applications usually exploit just a fraction of the theoretical performance of large platforms. Interactions among the hardware, system software, programming interface, and algorithm are extremely complex, and the implications for development of hybrid MPI+OpenMP Fortran/C/C++ applications are challenging. The emerging generation of machines will be even more complex, as will the applications that exploit them. Typical application development and tuning scenarios involve the manual and separate use of compilers and performance tools, and program modifications based upon insights laboriously gleaned from their output. In this proposal, we intend to raise the quality of the application development and tuning process by creating an integrated environment for program optimization that reduces the manual labor and guesswork of existing approaches. We will develop strategies and the corresponding interfaces that enable the application developer, compiler and performance tools to collaborate to generate optimized code based upon a variety of sources of feedback, including performance data from .offline. development runs as well as from .online. production runs. We will build and deploy a flexible, working system that combines robust, existing, open source software . a compiler, a program analysis tool and two performance tools with complementary features - into a single, coherent environment for collaborative static and dynamic application tuning. Application codes of varying complexity supplied by our application partner will motivate our development work as well as test and demonstrate our results. The result will be a powerful, integrated environment that can be used to obtain traditional performance data via program monitoring, event tracing and/or the extraction of hardware counter information, and to obtain support for the static or dynamic tuning of an application code. Intellectual Merit The proposed environment integrates several different existing technologies to provide a new level of support for optimizing hybrid MPI+OpenMP codes. Support for experimentation with the hybrid programming model is provided. The range of information that may be exploited by the compiler to optimize code is expanded to cover many system and application-level phenomena and a variety of optimization scenarios. Interactions between tools will facilitate the provision of an approach that is able to handle extreme-scale computations. Integration issues will be addressed with the goal of creating a deployable, extensible system. Broader Impacts The tools, ideas, and results of this project will be freely distributed and made available to the HPC community, nationally and internationally. Besides the general dissemination of results, the project has strong ties to performance engineering experts at NCSA. The tools will be installed on NCSA systems for testing and evaluation and will be made available to other users. The research brings together compiler, performance tool, and application developers, enriching the research experience of graduate students to create a well-rounded IT workforce. The PI is active in the OpenMP community and the project team has close working relationships with DOE and DOD. New knowledge generated will be integrated into advanced graduate coursework.
当前的高端应用程序通常只利用大型平台理论性能的一小部分。硬件、系统软件、编程接口和算法之间的交互非常复杂,对MPI+ OpenMPFortran/C/C++混合应用程序的开发具有挑战性。新一代的机器将更加复杂,利用它们的应用程序也将更加复杂。典型的应用程序开发和调优场景涉及手动和单独使用编译器和性能工具,以及基于从其输出中辛苦收集的见解进行程序修改。 在这个提案中,我们打算通过创建一个集成的环境,减少现有方法的手工劳动和猜测,以提高应用程序开发和调优过程的质量。我们将开发策略和相应的接口,使应用程序开发人员,编译器和性能工具协作,以根据各种反馈来源(包括来自. offline的性能数据)生成优化的代码。开发从. online运行得很好。生产运行。我们将构建和部署一个灵活的工作系统,该系统结合了强大的现有开源软件。一个编译器,一个程序分析工具和两个具有互补功能的性能工具-整合到一个单一的、一致的环境中,用于协作的静态和动态应用程序调优。我们的应用程序合作伙伴提供的不同复杂性的应用程序代码将激励我们的开发工作,以及测试和展示我们的结果。 其结果将是一个功能强大的集成环境,可用于通过程序监视、事件跟踪和/或硬件计数器信息的提取来获得传统的性能数据,并获得对应用程序代码的静态或动态调优的支持。 智力优点所提出的环境集成了几种不同的现有技术,为优化混合MPI+OpenMP代码提供了一个新的支持水平。支持实验的混合编程模型。可以被编译器利用来优化代码的信息的范围被扩展以覆盖许多系统和应用级现象以及各种优化场景。工具之间的相互作用将有助于提供一种能够处理极端规模计算的方法。 集成问题将以创建可部署、可扩展的系统为目标来解决。 更广泛的影响本项目的工具、想法和成果将免费分发并提供给国内和国际的HPC社区。除了一般性传播成果外,该项目还与国家能力自评局的性能工程专家有着密切的联系。这些工具将安装在国家能力自评系统上,供测试和评估之用,并将提供给其他用户。这项研究汇集了编译器,性能工具和应用程序开发人员,丰富了研究生的研究经验,创造了一个全面的IT劳动力。PI在OpenMP社区中非常活跃,项目团队与DOE和DOD有着密切的工作关系。产生的新知识将被纳入高级研究生课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danesh Tafti其他文献
Learning and interpreting drag force models for dense particle suspensions using graph neural networks
利用图神经网络学习和解释稠密颗粒悬浮液的阻力模型
- DOI:
10.1016/j.powtec.2025.121278 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:4.600
- 作者:
Neil Ashwin Raj;Danesh Tafti;Ze Cao;Nikhil Muralidhar - 通讯作者:
Nikhil Muralidhar
The role of vortex–vortex interactions in thrust production for a plunging flat plate
- DOI:
10.1016/j.jfluidstructs.2020.103011 - 发表时间:
2020-07-01 - 期刊:
- 影响因子:
- 作者:
Aevelina Rahman;Danesh Tafti - 通讯作者:
Danesh Tafti
Size- and Temperature-Dependent Collision and Deposition Model for Micron-Sized Sand Particles
微米级沙粒的尺寸和温度相关碰撞和沉积模型
- DOI:
10.1115/1.4042215 - 发表时间:
2019-03 - 期刊:
- 影响因子:0
- 作者:
Kuahai Yu;Danesh Tafti - 通讯作者:
Danesh Tafti
Proper orthogonal decomposition of straight and level flight kinematics in an insectivorous bat
食虫蝙蝠直线和平飞运动学的正确正交分解
- DOI:
10.2514/6.2018-2155 - 发表时间:
2018-01 - 期刊:
- 影响因子:0
- 作者:
Xiaozhou Fan;Peter Windes;Danesh Tafti;Susheel Sekhar;Matt Bender;Andrew Kurdila;Rolf Müller - 通讯作者:
Rolf Müller
Danesh Tafti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danesh Tafti', 18)}}的其他基金
Collaborative Research: Extreme Thermal Transport Events in Supersonic and Hypersonic Shock Wave-Turbulence Interactions
合作研究:超音速和高超音速冲击波-湍流相互作用中的极端热传输事件
- 批准号:
2041622 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
UNS: Deconstructing Complex Flight Aerodynamics by Data-Driven Identification of Low Order Non-linear Motion Models
UNS:通过数据驱动的低阶非线性运动模型识别解构复杂的飞行空气动力学
- 批准号:
1510797 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
I-Corps: Bio-inspired Underwater Surveillance Vehicle (BUSV)
I-Corps:仿生水下监视车(BUSV)
- 批准号:
1242484 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Compliance and Dynamic Geometry Variation in Coronory Artery Flows under In-Vivo Conditions
体内条件下冠状动脉血流的顺应性和动态几何变化
- 批准号:
1235790 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
FRP: Energy Efficient Smart Building Environment
FRP:节能智能建筑环境
- 批准号:
1127936 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
COLLABORATIVE RESEARCH: Extreme OpenMP: A Programming Model for Productive High End Computing
协作研究:Extreme OpenMP:高效高端计算的编程模型
- 批准号:
0833163 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Large Eddy Simulations of Separated Flows on Massively Parallel Architectures (Postdoctoral Research Associateship in Computational Science and Engineering)
大规模并行架构上分离流的大涡模拟(计算科学与工程博士后研究助理)
- 批准号:
9404934 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322973 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: III: Small: High-Performance Scheduling for Modern Database Systems
协作研究:III:小型:现代数据库系统的高性能调度
- 批准号:
2322974 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400166 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
- 批准号:
2420369 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403399 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
- 批准号:
2400165 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant