CAREER: Undirected Bipartite Graphical Models

职业:无向二分图模型

基本信息

  • 批准号:
    0447903
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-03-15 至 2012-02-29
  • 项目状态:
    已结题

项目摘要

Modern society increasingly relies on processing, storing and communicating large amounts of information. The exponential growth of databases necessitates the development of algorithms that structure, compress and query them efficiently. The goal of this research is to develop new tools based on probabilistic models to achieve these objectives.A new class of "undirected bipartite graphical models" is studied that embeds documents into a low dimensional "topic-space". These representations are efficient and capture semantic relationships. Training of the underlying probabilistic model is achieved through a technique called "contrastive divergence learning" which is particularly well adapted to the UBG model. The main contributions of this research are the development of a new class of probabilistic graphical model, the development of improved learning algorithms that scale up to large data-sets and the application of these novel techniques to two real world applications: image restoration and information retrieval.Research is integrated with teaching through the development of new classes in machine learning both at the undergraduate and the graduate level, where students will be engaged in research in the above application areas.The proposed research makes important contributions that can have a broad impact on security, web-technologies, commerce, multi-media, medical expert systems etc. In particular, the proposed projects in image restoration and information retrieval have the potential to make an impact on tomorrow's technologies. An open-source, web-based repository with freely available software will be developed to help achieve that goal.http://www.ics.uci.edu/~welling/NSFcareer/NSFcareer.html
现代社会越来越依赖于处理、存储和交流大量信息。数据库的指数级增长要求开发高效地组织、压缩和查询数据库的算法。本研究的目标是开发基于概率模型的新工具来实现这些目标。研究了一类新的将文档嵌入到低维主题空间中的无向二部图模型。这些表示是有效的,并且捕获了语义关系。对基本概率模型的训练是通过一种称为“对比发散学习”的技术来实现的,这种技术特别适合于UBG模型。这项研究的主要贡献是开发了一类新的概率图形模型,开发了可扩展到大数据集的改进的学习算法,并将这些新技术应用于两个现实世界的应用:图像恢复和信息检索。研究与教学相结合,通过在本科生和研究生水平上开发机器学习的新课程,学生将从事上述应用领域的研究。所提出的研究做出了重要贡献,可以对安全、网络技术、商业、多媒体、医学专家系统等产生广泛的影响。特别是,拟议的图像恢复和信息检索项目有可能对未来的技术产生影响。将开发一个开放源码的基于Web的存储库,并提供免费的软件,以帮助实现这一goal.http://www.ics.uci.edu/~welling/NSFcareer/NSFcareer.html

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Max Welling其他文献

Scientific discovery in the age of artificial intelligence
人工智能时代的科学发现
  • DOI:
    10.1038/s41586-023-06221-2
  • 发表时间:
    2023-08-02
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Hanchen Wang;Tianfan Fu;Yuanqi Du;Wenhao Gao;Kexin Huang;Ziming Liu;Payal Chandak;Shengchao Liu;Peter Van Katwyk;Andreea Deac;Anima Anandkumar;Karianne Bergen;Carla P. Gomes;Shirley Ho;Pushmeet Kohli;Joan Lasenby;Jure Leskovec;Tie-Yan Liu;Arjun Manrai;Debora Marks;Bharath Ramsundar;Le Song;Jimeng Sun;Jian Tang;Petar Veličković;Max Welling;Linfeng Zhang;Connor W. Coley;Yoshua Bengio;Marinka Zitnik
  • 通讯作者:
    Marinka Zitnik
Initialized Equilibrium Propagation for Backprop-Free Training
用于无反向传播训练的初始化平衡传播
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter O'Connor;E. Gavves;Max Welling
  • 通讯作者:
    Max Welling
Hamiltonian ABC
哈密​​顿ABC
UvA-DARE (Digital Academic Repository) No time to waste: practical statistical contact tracing with few low-bit messages
UvA-DARE(数字学术知识库)没有时间可以浪费:使用很少的低位消息进行实用的统计接触者追踪
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rob Romijnders;Yuki M. Asano;Christos Louizos;Max Welling
  • 通讯作者:
    Max Welling
Optimization Monte Carlo: Efficient and Embarrassingly Parallel Likelihood-Free Inference
优化蒙特卡罗:高效且令人尴尬的并行无似然推理

Max Welling的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Max Welling', 18)}}的其他基金

RI: Small: Efficient Bayesian Learning from Stochastic Gradients
RI:小:从随机梯度中进行高效贝叶斯学习
  • 批准号:
    1216045
  • 财政年份:
    2012
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
IIS: RI: Small: Nonlinear Dynamical System Theory for Machine Learning
IIS:RI:小型:机器学习的非线性动力系统理论
  • 批准号:
    1018433
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
RI:Small:Collaborative Research: Infinite Bayesian Networks for Hierarchical Visual Categorization
RI:Small:协作研究:用于分层视觉分类的无限贝叶斯网络
  • 批准号:
    0914783
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning Taxonomies of the Visual World
合作研究:学习视觉世界的分类法
  • 批准号:
    0535278
  • 财政年份:
    2005
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

FET: Medium: A Quantum Computing Based Approach to Undirected Generative Machine Learning Models
FET:中:基于量子计算的无向生成机器学习模型方法
  • 批准号:
    2211841
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Development of a sensor for the extraction and analysis of undirected complaints in online-fora
开发用于提取和分析在线论坛中无针对性投诉的传感器
  • 批准号:
    280368616
  • 财政年份:
    2015
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grants
Approximating Network Design Problems on Directed and Undirected Graphs
在有向图和无向图上逼近网络设计问题
  • 批准号:
    0829959
  • 财政年份:
    2009
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Space complexity of undirected graph accessibility problem
无向图可达性问题的空间复杂度
  • 批准号:
    09640296
  • 财政年份:
    1997
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了