FET: Medium: A Quantum Computing Based Approach to Undirected Generative Machine Learning Models
FET:中:基于量子计算的无向生成机器学习模型方法
基本信息
- 批准号:2211841
- 负责人:
- 金额:$ 93.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many crucial artificial intelligence applications in health sciences do not have sufficient practical data. Even when one collects incredible amounts of data, the data has significant gaps because of the unique circumstances (health conditions) of each patient. Training sizeable artificial intelligence systems on such data often results in an output that is either unacceptable for making decisive medical pronouncements or the systems do not perform any better than conventional methodologies. As such, the project's goal is to develop artificial intelligence, particularly machine learning algorithms that train rapidly, minimize errors, and do not require significant human expertise. The project's novelty is utilizing emerging quantum computing (QC) algorithms that offer the potential for rapid training of models and the ability to find better solutions quickly. In this project, QC will be applied to machine learning to demonstrate the efficacy of QC-based methods in two challenging applications: (a) seizure detection on encephalography signals and (b) automatic interpretation of digital pathology images. Positively impacting the two high-level applications will allow automated systems to approach domain expert (human) performance and increase the impact of this technology in the medical field, which will impact countless humans worldwide. Access to the highest levels of QC research will create career development opportunities, encouraging high schoolers to pursue computer and information science and engineering careers. In this project, adiabatic quantum annealing (QA) will be used to solve two significant computational challenges: (a) finding a global minimum and (b) sampling from complex probability distributions. It will be demonstrated that training that utilizes QA-supported sampling can find better parameters than conventional parameter optimization approaches, and it also overcomes the deficiencies of current machine learning algorithms in challenging applications, such as seizure detection on encephalography signals and automatic interpretation of digital pathology images. Through these developments, it is also expected of this project to demonstrate that a wide range of configuration spaces (undirected probabilistic graphical models trained with a variety of application-relevant data) that have the property of "difficult to find local valleys in the probability distribution" to be easily sampled with QA. These findings will be applied to deep generative models for superior classification and pattern reconstruction accuracy. The ability of QA to reach difficult to sample regions of the configuration space will benefit many machine learning applications.This project is jointly funded by Foundations of Emerging Technologies (FET) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
健康科学中许多关键的人工智能应用都没有足够的实际数据。即使收集了大量的数据,由于每个患者的独特情况(健康状况),数据也会有很大的差距。在这些数据上训练相当大的人工智能系统通常会导致无法做出决定性的医疗声明的输出,或者系统的性能并不比传统方法更好。因此,该项目的目标是开发人工智能,特别是机器学习算法,这些算法可以快速训练,最大限度地减少错误,并且不需要大量的人类专业知识。该项目的新奇之处在于利用新兴的量子计算(QC)算法,这些算法提供了快速训练模型的潜力,并能够快速找到更好的解决方案。在这个项目中,QC将被应用于机器学习,以证明基于QC的方法在两个具有挑战性的应用中的有效性:(a)脑电图信号的癫痫发作检测和(B)数字病理图像的自动解释。积极影响这两个高级应用程序将使自动化系统接近领域专家(人类)的性能,并增加该技术在医疗领域的影响,这将影响全球无数人。获得最高水平的QC研究将创造职业发展机会,鼓励高中生追求计算机和信息科学与工程职业。 在这个项目中,绝热量子退火(QA)将被用来解决两个重要的计算挑战:(a)找到一个全局最小值和(B)从复杂的概率分布采样。 它将被证明,训练,利用QA支持的采样可以找到更好的参数比传统的参数优化方法,它也克服了目前的机器学习算法在具有挑战性的应用,如癫痫发作检测脑电造影信号和数字病理图像的自动解释的不足。通过这些开发,该项目还有望证明,具有“难以在概率分布中找到局部谷”属性的各种配置空间(使用各种应用相关数据训练的无向概率图形模型)可以轻松地通过QA进行采样。这些发现将应用于深度生成模型,以获得上级分类和模式重建精度。QA能够到达配置空间的难以采样区域的能力将使许多机器学习应用受益。该项目由新兴技术基金会(FET)和刺激竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samee Khan其他文献
Samee Khan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samee Khan', 18)}}的其他基金
REU Site: Intelligent Edge Computing Systems
REU 站点:智能边缘计算系统
- 批准号:
2348711 - 财政年份:2024
- 资助金额:
$ 93.72万 - 项目类别:
Standard Grant
Workshop on Quantum Computing, Information, Science, and Engineering
量子计算、信息、科学与工程研讨会
- 批准号:
2202377 - 财政年份:2022
- 资助金额:
$ 93.72万 - 项目类别:
Standard Grant
Travel: NSF Student Travel Grant for 2022 IEEE Cloud Summit
旅行:2022 年 IEEE 云峰会 NSF 学生旅行补助金
- 批准号:
2243579 - 财政年份:2022
- 资助金额:
$ 93.72万 - 项目类别:
Standard Grant
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
- 批准号:
2216898 - 财政年份:2022
- 资助金额:
$ 93.72万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: HARMONIA: New Methods for Colocating Multiple QoS-Sensitive Jobs
协作研究:CNS 核心:小型:HARMONIA:共置多个 QoS 敏感作业的新方法
- 批准号:
2124908 - 财政年份:2021
- 资助金额:
$ 93.72万 - 项目类别:
Standard Grant
EAGER: From Theory to Practice of Elastic Interval Runtime Schedulers
EAGER:弹性间隔运行时调度器从理论到实践
- 批准号:
2135439 - 财政年份:2021
- 资助金额:
$ 93.72万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: FET: Medium: Design and Implementation of Quantum Databases
合作研究:FET:媒介:量子数据库的设计和实现
- 批准号:
2312755 - 财政年份:2023
- 资助金额:
$ 93.72万 - 项目类别:
Standard Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 93.72万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Medium: Design and Implementation of Quantum Databases
合作研究:FET:媒介:量子数据库的设计和实现
- 批准号:
2312754 - 财政年份:2023
- 资助金额:
$ 93.72万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Energy-Efficient Persistent Learning-in-Memory with Quantum Tunneling Dynamic Synapses
合作研究:FET:中:具有量子隧道动态突触的节能持久内存学习
- 批准号:
2208771 - 财政年份:2022
- 资助金额:
$ 93.72万 - 项目类别:
Standard Grant
SHF: FET: Medium: Designing and Synthesizing a Quantum Circuit Compiler
SHF:FET:中:设计和综合量子电路编译器
- 批准号:
2212232 - 财政年份:2022
- 资助金额:
$ 93.72万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Energy-Efficient Persistent Learning-in-Memory with Quantum Tunneling Dynamic Synapses
合作研究:FET:中:具有量子隧道动态突触的节能持久内存学习
- 批准号:
2208770 - 财政年份:2022
- 资助金额:
$ 93.72万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium: Robust Quantum Networks via Efficient Entanglement Distribution
合作研究:FET:介质:通过高效纠缠分布实现稳健的量子网络
- 批准号:
2106449 - 财政年份:2021
- 资助金额:
$ 93.72万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Medium: Robust Quantum Networks via Efficient Entanglement Distribution
合作研究:FET:介质:通过高效纠缠分布实现稳健的量子网络
- 批准号:
2106448 - 财政年份:2021
- 资助金额:
$ 93.72万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Medium: Robust Quantum Networks via Efficient Entanglement Distribution
合作研究:FET:介质:通过高效纠缠分布实现稳健的量子网络
- 批准号:
2106447 - 财政年份:2021
- 资助金额:
$ 93.72万 - 项目类别:
Continuing Grant
Collaborative Research: FET: Medium: Quantum Localization and Synchronization Networks
合作研究:FET:媒介:量子定位和同步网络
- 批准号:
1956211 - 财政年份:2020
- 资助金额:
$ 93.72万 - 项目类别:
Standard Grant














{{item.name}}会员




