CAREER: A unified study of singularities
职业:奇点的统一研究
基本信息
- 批准号:0449465
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0449465 JonssonAbstractThe investigator will use valuations to undertake a broad and unified, yet detailed study of singularities arising in different mathematical fields, including algebraic geometry, complex analysis and dynamical systems. A cornerstone in the analysis is to encode singularities in terms of functions and measures on suitable valuation spaces, that is, sets of valuations on an appropriate ring. In the case of singularities at the origin in the affine plane, the valuation space has the structure of a tree with infinite and dense branching. In more general cases, it is expected to be a building, or projective limit of simplicial complexes. Being fundamental objects in complex analysis, positive closed currents may be approximated by varieties. As an analogue of Hironaka's theorem, the investigator will study whether every positive closed current admits an approximate resolution of singularities. He will also investigate the corresponding question for dynamical systems defined by holomorphic fixed point germs. Other problems to be addressed are semicontinuity of multiplier ideals and degree growths of iterates of rational maps of projective space. The investigator will design an undergraduate course and continue his development of a masters course to suit the needs at the University of Michigan (UM). Additionally he will engage middle and high school students in mathematical activities, in particular through a summer camp at the UM.Singularities play a prominent role throughout mathematics, even when the primary objects of study are regular (smooth) objects. An example of a singularity is that of a curve in the plane that does not look like a line on a small scale, but rather as a cross or cusp, or even more complicated.It is known that plane singular curves can be viewed as "shadows" of nonsingular curves in space. This provides a way of understanding complicated object thorugh simpler ones. Other examples of singularities appear in dynamical systems, when studying the speed at which iterative algorithms converge. Working with students at the graduate and undergraduate levels, the investigator will undertake a unified study of singularities in different branches of mathematics. In addition he will develop a new undergraduate course and continue the redesigning of a graduate course. Finally he will work with K-12 students, in particular by continuing the development of a course in the framework of the Michigan Mathematics and Science Scholars summer program for high school students.
0449465 JonssonAbstractThe调查员将使用估值进行广泛的和统一的,但在不同的数学领域,包括代数几何,复杂的分析和动力系统中产生的奇点详细的研究。在分析的基石是编码奇点的功能和措施,在适当的估值空间,也就是说,一个适当的环上的估值集。在仿射平面中原点处的奇点的情况下,赋值空间具有树的结构,该树具有无限且稠密的分支。在更一般的情况下,它被期望是单纯复形的建筑物或投影极限。正闭合电流是复分析中的基本对象,可以用各种形式来近似。作为Hironaka定理的类似物,研究者将研究是否每个正的闭合电流都允许奇点的近似解。他还将调查相应的问题,动力系统定义的全纯不动点芽。其他要解决的问题是乘子理想的不连续性和射影空间的有理映射迭代的度增长。 调查员将设计一个本科课程,并继续他的硕士课程的发展,以适应密歇根大学(UM)的需求。此外,他将从事初中和高中学生的数学活动,特别是通过在UM夏令营。奇点在整个数学中发挥着突出的作用,即使当研究的主要对象是定期(光滑)对象。奇异性的一个例子是平面上的一条曲线,它在小尺度上看起来不像一条线,而是一个十字或尖点,甚至更复杂。众所周知,平面奇异曲线可以被看作空间中非奇异曲线的“阴影”。这就提供了一种通过简单对象来理解复杂对象的方法。在研究迭代算法收敛的速度时,奇点的其他例子出现在动力系统中。与学生在研究生和本科水平的工作,调查员将进行统一的研究奇点在不同的数学分支。此外,他将开发一个新的本科课程,并继续研究生课程的重新设计。最后,他将与K-12学生合作,特别是继续在密歇根州数学和科学学者暑期项目的框架内为高中生开发一门课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mattias Jonsson其他文献
Measures of finite energy in pluripotential theory: a synthetic approach
多能理论中有限能量的测量:一种综合方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. Boucksom;Mattias Jonsson - 通讯作者:
Mattias Jonsson
When is it biological control? A framework of definitions, mechanisms, and classifications
- DOI:
10.1007/s10340-021-01354-7 - 发表时间:
2021-03-13 - 期刊:
- 影响因子:4.100
- 作者:
Johan A. Stenberg;Ingvar Sundh;Paul G. Becher;Christer Björkman;Mukesh Dubey;Paul A. Egan;Hanna Friberg;José F. Gil;Dan F. Jensen;Mattias Jonsson;Magnus Karlsson;Sammar Khalil;Velemir Ninkovic;Guillermo Rehermann;Ramesh R. Vetukuri;Maria Viketoft - 通讯作者:
Maria Viketoft
MATH 710: TOPICS IN MODERN ANALYSIS II – L-METHODS
数学 710:现代分析主题 II – L 方法
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mattias Jonsson - 通讯作者:
Mattias Jonsson
Sums of Lyapunov exponents for some polynomial maps of ${\bf C}^2$
${f C}^2$ 的一些多项式映射的李亚普诺夫指数之和
- DOI:
10.1017/s0143385798108209 - 发表时间:
1998 - 期刊:
- 影响因子:0.9
- 作者:
Mattias Jonsson - 通讯作者:
Mattias Jonsson
A finiteness property of graded sequences of ideals
理想分级序列的有限性
- DOI:
10.2140/ant.2012.6.561 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Mattias Jonsson;M. Mustaţă - 通讯作者:
M. Mustaţă
Mattias Jonsson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mattias Jonsson', 18)}}的其他基金
Complex Analysis, Dynamics, and Geometry via Non-Archimedean Methods
通过非阿基米德方法进行复杂分析、动力学和几何
- 批准号:
2154380 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Non-Archimedean Methods in Complex Analysis, Dynamics, and Geometry
复杂分析、动力学和几何中的非阿基米德方法
- 批准号:
1900025 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Non-Archimedean Techniques in Analysis, Dynamics, and Geometry
分析、动力学和几何中的非阿基米德技术
- 批准号:
1600011 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Continuing Grant
Non-Archimedean Geometry and its Applications
非阿基米德几何及其应用
- 批准号:
1500184 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Non-Archimedean Methods in Analysis, Dynamics and Geometry
分析、动力学和几何中的非阿基米德方法
- 批准号:
1266207 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Singularities in Complex Analysis and Dynamics
复杂分析和动力学中的奇点
- 批准号:
1001740 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
Residue Currents in Complex Analysis and Commutative Algebra
复分析和交换代数中的剩余流
- 批准号:
0901073 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Phase 2b Clinical Study of the P38 Alpha Kinase Inhibitor Neflamapimod in Patients with Mild-to-Moderate Dementia with Lewy Bodies (DLB)
P38 α激酶抑制剂 Neflamapimod 治疗轻至中度路易体痴呆 (DLB) 患者的 2b 期临床研究
- 批准号:
10582488 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A study on environmental sound analysis based on unified and continual learning
基于统一持续学习的环境声分析研究
- 批准号:
23K16908 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
An Explainable Unified AI Strategy for Efficient and Robust Integrative Analysis of Multi-omics Data from Highly Heterogeneous Multiple Studies
一种可解释的统一人工智能策略,用于对来自高度异质性多项研究的多组学数据进行高效、稳健的综合分析
- 批准号:
10729965 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Feasibility and Safety of a Portable Exoskeleton to Improve Mobility in Parkinson’s Disease
便携式外骨骼改善帕金森病患者活动能力的可行性和安全性
- 批准号:
10702193 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Neuro-exergaming for the Prevention and Remediation of Decline due to Parkinson's Disease: Clinical Trial of the Interactive Physical and Cognitive Exercise System (iPACES v3)
用于预防和治疗帕金森病导致的衰退的神经运动游戏:交互式身体和认知运动系统 (iPACES v3) 的临床试验
- 批准号:
10698250 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Study on an Efficient Unified Method for Obtaining Optimal Design of the Multi-Dimensional, Multi-State and Multi-Objective Network System Considering Similar Shape of Graphs
考虑图相似形状的多维、多状态、多目标网络系统优化设计的高效统一方法研究
- 批准号:
22K04603 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Unified group sequential designs for clustered data (eye level) in randomized eye trials
随机眼科试验中聚类数据(眼水平)的统一组序贯设计
- 批准号:
10527031 - 财政年份:2022
- 资助金额:
-- - 项目类别: