Collaborative Research: Spatial Inference and Prediction with Biogeographical Data

合作研究:利用生物地理数据进行空间推断和预测

基本信息

项目摘要

Maps of actual or potential species distributions are required for many aspects of resource management and conservation planning including biodiversity assessment, habitat management and restoration, single- and multiple species and habitat conservation plans, population viability analysis, modeling community and ecosystem dynamics, and predicting the effects of climate change on species and ecosystems. A growing number of quantitative methods are being used both inferentially, to identify the parameters that determine habitat suitability, and predictively, to assign habitat value to locations where biological survey data are lacking (most of the earth's surface). There are three impediments to the effective use of these modeling tools by both researchers and conservation and resource managers: a) too few of the existing applications explicitly incorporate the spatial dependence inherent in biospatial data into the modeling methods b) the statistical and GIS modeling tools are not always well integrated, and, c) the proliferation of potential methods and conflicting results regarding their efficacy is daunting to users. The investigators will 1) synthesize existing information on spatial prediction using biogeographical data, 2) strategically plan and execute a set of modeling experiments, and, based on these, 3) develop a framework to guide the operational use of these methods for biodiversity assessment and landscape management. Comparative modeling experiments will be executed using species distribution and abundance data spanning the three major ecological regions in southern California (desert, mountain, coastal), for plants from vegetation surveys and reptiles and amphibians (herptiles) surveyed in a multi-year monitoring program. The methods tested will include parametric and non-parametric statistical (generalized) models, machine learning approaches, and those incorporating spatial dependence (regression kriging, spatial autoregressive models).The proposed research is innovative because it will provide a broad comparison of modeling methods for real biological datasets that vary in their sample design, measurement scale, and spatial dependence, but were collected in the same bioregion, and will focus on biogeographical modeling of spatial dependence in plant and animal species distribution and abundance. It will result in a framework that can be used by researchers and resource managers to select an approach to modeling that is best suited to their biogeographical data and questions. The project will directly benefit society because it is collaborative with the Biological Resources Division of the US Geological Survey, the federal agency with a leadership role in spatial data archiving and analysis and biological information infrastructure. Thus, the framework and recommendations will be directly conveyed to resource and data managers.
资源管理和保护规划的许多方面都需要实际或潜在的物种分布图,包括生物多样性评估、栖息地管理和恢复、单一和多个物种和栖息地保护计划、种群生存能力分析、群落和生态系统动态模拟以及预测气候变化对物种和生态系统的影响。越来越多的定量方法正在被用于推论,以确定确定栖息地适宜性的参数,并预测地将栖息地价值分配给缺乏生物调查数据的地点(地球表面的大部分)。研究人员以及保护和资源管理者对这些建模工具的有效利用有三个障碍:a)现有应用程序中明确将生物空间数据固有的空间依赖性纳入建模方法的太少;b)统计和地理信息系统建模工具并不总是很好地集成;c)潜在方法的激增和关于其有效性的相互矛盾的结果令用户望而生畏。研究人员将1)利用生物地理数据综合现有的空间预测信息,2)战略性地计划和执行一系列模拟实验,3)在此基础上开发一个框架,以指导这些方法在生物多样性评估和景观管理中的实际使用。将利用南加州三个主要生态区(沙漠、山区、沿海)的物种分布和丰度数据,对多年监测计划中调查的植被调查植物以及爬行动物和两栖动物(草本动物)进行比较建模实验。测试的方法将包括参数和非参数统计(广义)模型、机器学习方法以及包含空间相关性的方法(回归克里格法、空间自回归模型)。拟议的研究具有创新性,因为它将提供对真实生物数据集的建模方法的广泛比较,这些真实生物数据集的样本设计、测量规模和空间相关性不同,但收集在同一生物区,并将重点放在动植物物种分布和丰度的空间相关性的生物地理建模上。它将产生一个框架,研究人员和资源经理可以使用该框架来选择最适合他们的生物地理数据和问题的建模方法。该项目将直接造福社会,因为它是与美国地质调查局生物资源司合作的,美国地质调查局是在空间数据归档和分析以及生物信息基础设施方面发挥领导作用的联邦机构。因此,框架和建议将直接传达给资源和数据管理员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Miller其他文献

Parallels between a Collaborative Research Process and the Middle Level Philosophy.
协作研究过程与中层哲学之间的相似之处。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robin Dever;D. Ross;Jennifer Miller;P. White;K. Jones
  • 通讯作者:
    K. Jones
Influence of Electrolyte Composition on Ultrafast Interfacial Electron Transfer in Fe-Sensitized TiO2-Based Solar Cells
电解质成分对 Fe 敏化 TiO2 基太阳能电池超快界面电子转移的影响
  • DOI:
    10.1021/acs.jpcc.9b09404
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher R. Tichnell;Jennifer Miller;Chang Liu;S. Mukherjee;E. Jakubikova;J. McCusker
  • 通讯作者:
    J. McCusker
Ohio’s Middle Childhood Licensure Study
俄亥俄州的中期儿童执照研究
  • DOI:
    10.1080/19404476.2013.11462104
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. White;D. Ross;Jennifer Miller;Robin Dever;K. Jones
  • 通讯作者:
    K. Jones
OS-038 - Substitution of even one non-vegetarian meal with plant-based alternatives associate with lower ammoniagenesis in patients with cirrhosis who follow a western diet: a randomized clinical trial
  • DOI:
    10.1016/s0168-8278(23)00495-6
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Fagan;Bryan Badal;Victoria Tate;Travis Mousel;Mary Leslie Gallagher;Puneet Puri;Michael Fuchs;Brian Davis;Jennifer Miller;Jasmohan S Bajaj
  • 通讯作者:
    Jasmohan S Bajaj
Sa1094 – Factors Influencing Timing of Paracentesis After Hospital Admission
  • DOI:
    10.1016/s0016-5085(19)37477-3
  • 发表时间:
    2019-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Eric Ballecer;Jennifer Miller;Jigar Patel;Anthony Razzano;Harry He;Julie Jiang;Alexander Sy;Peter Malet;Raluca Vrabie
  • 通讯作者:
    Raluca Vrabie

Jennifer Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Miller', 18)}}的其他基金

Creating and Sustaining Noyce Mentors en la Frontera: a HSI Collaborative Capacity Building Grant
在拉弗龙特拉创建和维持诺伊斯导师:HSI 协作能力建设补助金
  • 批准号:
    2345011
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Noyce Scholars en la Frontera (Noyce Scholars on the Border)
边境的诺伊斯学者 (Noyce Scholars en la Frontera)
  • 批准号:
    2050173
  • 财政年份:
    2021
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Continuing Grant
Developing a Novel Framework for Analyzing Dynamic Interactions in Movement Data
开发用于分析运动数据中的动态交互的新框架
  • 批准号:
    1424920
  • 财政年份:
    2014
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Characterizing Land-Management Impacts on Ecosystem Structure in the Botswana Central Kalahari
博士论文研究:描述土地管理对博茨瓦纳中部卡拉哈里生态系统结构的影响
  • 批准号:
    1203580
  • 财政年份:
    2012
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Spatial Autocorrelation and Species Distribution Models: Analyzing the Effects of Spatial Structure, Sampling Strategy, Statistical Methods, and Scale Using Simulated Data
空间自相关和物种分布模型:使用模拟数据分析空间结构、采样策略、统计方法和规模的影响
  • 批准号:
    0962198
  • 财政年份:
    2010
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: Spatial Inference and Prediction with Biogeographical Data
合作研究:利用生物地理数据进行空间推断和预测
  • 批准号:
    0832367
  • 财政年份:
    2007
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Continuing Grant
POWRE: Combined Corrosion Assessment Techniques for Evaluating the Effect of Free Chlorine on Aged Cast Iron Water Distribution System Pipes
POWRE:用于评估游离氯对老化铸铁配水系统管道影响的综合腐蚀评估技术
  • 批准号:
    9870435
  • 财政年份:
    1998
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320259
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Remote Sensing of the Lower Ionosphere during 2024 Solar Eclipse: Revealing the Spatial and Temporal Scales of Ionization and Recombination
合作研究:2024 年日食期间低电离层遥感:揭示电离和重组的时空尺度
  • 批准号:
    2320260
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Exploring the Kermadec Trench --- Residence time, spatial gradients, and insights into ventilation
合作研究:探索克马德克海沟——停留时间、空间梯度和通风见解
  • 批准号:
    2319547
  • 财政年份:
    2023
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: SPARC: Conducting Collaborative Research and Leveraging Resources to Advance Spatial Archaeometry
协作研究:SPARC:开展协作研究并利用资源推进空间考古学
  • 批准号:
    2309809
  • 财政年份:
    2023
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Design: US-Sao Paulo: The roles of stochasticity and spatial context in dynamics of functional diversity under global change
合作研究:BoCP-设计:美国-圣保罗:随机性和空间背景在全球变化下功能多样性动态中的作用
  • 批准号:
    2225096
  • 财政年份:
    2023
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Design: US-Sao Paulo: The roles of stochasticity and spatial context in dynamics of functional diversity under global change
合作研究:BoCP-设计:美国-圣保罗:随机性和空间背景在全球变化下功能多样性动态中的作用
  • 批准号:
    2225098
  • 财政年份:
    2023
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Collaborative Research: SII-NRDZ-SBE: Enabling Fairness-Aware and Privacy-Preserving Spatial Spectrum Sharing
合作研究:SII-NRDZ-SBE:实现公平意识和隐私保护的空间频谱共享
  • 批准号:
    2332010
  • 财政年份:
    2023
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Experiments and Modeling for Spatial, Finite, and Fast Rheometry of Graded Hydrogels using Inertial Cavitation
合作研究:利用惯性空化对梯度水凝胶进行空间、有限和快速流变测量的综合实验和建模
  • 批准号:
    2232426
  • 财政年份:
    2023
  • 资助金额:
    $ 10.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了