Spatial Autocorrelation and Species Distribution Models: Analyzing the Effects of Spatial Structure, Sampling Strategy, Statistical Methods, and Scale Using Simulated Data
空间自相关和物种分布模型:使用模拟数据分析空间结构、采样策略、统计方法和规模的影响
基本信息
- 批准号:0962198
- 负责人:
- 金额:$ 26.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The use of species distribution models (SDM) to map and monitor animal and plant distributions has become increasingly important in the context of awareness of environmental change and its ecological consequences. Although increasingly sophisticated statistical methods are being used in SDM, the vast majority has been developed without considering spatial autocorrelation in the data. When spatial autocorrelation is ignored and nonspatial statistical methods are used, coefficient estimates are less precise and overall the models can be poorly specified. Explicitly spatial statistical methods not only can improve upon these model calibration issues, but they also can incorporate information on spatial processes such as competition, dispersal, and disturbance. Although there has been a recent increase in SDM studies that address explicitly spatial statistical methods, results have been incongruous and difficult to synthesize. The location- , data-, or scale-specific nature of these studies has impeded efforts to disentangle the effects of spatial structure in the data, sampling strategy, the scale of the study, and statistical methods used. This project addresses each of these issues specifically with the general research question: how does spatial autocorrelation affect species distribution models? The research focuses on using multi-resolution simulated distribution maps and novel assessment measures in order to analyze how differences in each of the four issues- spatial structure, sampling strategy, scale, and statistical methods- impact SDM both separately and in concert. The main outcome of this project will be a framework that can be used to guide all aspects of model conceptualization and development (sampling strategy, statistical method(s) used, and appropriate spatial scale) when using binary data with spatial autocorrelation. The research will make an important contribution to a greater understanding of how spatial autocorrelation affects inductive models used with binary response data. Beyond predicting species distributions, these models have become an important and widely used decision-making tool for a variety of biogeographical applications, such as studying the effects of climate change, identifying potential protected areas, determining locations potentially susceptible to invasion, and mapping vector-borne disease spread and risk. Outside of biogeography, similar binary response models are used in medical/health applications (e.g., diagnostic tests) and to address economic and social science questions (e.g. labor market status, credit scoring, and voting behavior).
利用物种分布模型(SDM)来绘制和监测动植物分布,在认识环境变化及其生态后果的背景下变得越来越重要。 虽然SDM中使用的统计方法越来越复杂,但绝大多数方法都没有考虑数据的空间自相关性。 当忽略空间自相关并使用非空间统计方法时,系数估计值的精确度较低,并且总体上可以很好地指定模型。 显式的空间统计方法不仅可以改善这些模型的校准问题,但他们也可以纳入空间过程,如竞争,扩散和干扰的信息。 虽然最近有越来越多的SDM研究,明确解决空间统计方法,结果一直不协调,难以综合。 这些研究的位置,数据或规模的特定性质阻碍了努力解开空间结构的影响,在数据,抽样策略,研究的规模,和统计方法的使用。 本计画针对这些议题中的每一个,提出一般性的研究问题:空间自相关如何影响物种分布模式? 研究的重点是使用多分辨率模拟分布图和新的评估措施,以分析如何在每一个四个问题的差异-空间结构,抽样策略,规模和统计方法-影响SDM分别和一致。该项目的主要成果将是一个框架,可用于指导使用具有空间自相关性的二进制数据时模型概念化和开发的各个方面(抽样策略,使用的统计方法和适当的空间尺度)。 这项研究将作出重要贡献,更好地了解空间自相关如何影响二进制响应数据使用的归纳模型。 除了预测物种分布,这些模型已成为一个重要的和广泛使用的决策工具,用于各种地理学应用,如研究气候变化的影响,确定潜在的保护区,确定可能易受入侵的位置,以及绘制媒介传播疾病的传播和风险。 在脑电描记术之外,类似的二进制响应模型用于医疗/健康应用(例如,诊断测试),并解决经济和社会科学问题(如劳动力市场状况,信用评分和投票行为)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Miller其他文献
Parallels between a Collaborative Research Process and the Middle Level Philosophy.
协作研究过程与中层哲学之间的相似之处。
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Robin Dever;D. Ross;Jennifer Miller;P. White;K. Jones - 通讯作者:
K. Jones
Influence of Electrolyte Composition on Ultrafast Interfacial Electron Transfer in Fe-Sensitized TiO2-Based Solar Cells
电解质成分对 Fe 敏化 TiO2 基太阳能电池超快界面电子转移的影响
- DOI:
10.1021/acs.jpcc.9b09404 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Christopher R. Tichnell;Jennifer Miller;Chang Liu;S. Mukherjee;E. Jakubikova;J. McCusker - 通讯作者:
J. McCusker
Ohio’s Middle Childhood Licensure Study
俄亥俄州的中期儿童执照研究
- DOI:
10.1080/19404476.2013.11462104 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
P. White;D. Ross;Jennifer Miller;Robin Dever;K. Jones - 通讯作者:
K. Jones
OS-038 - Substitution of even one non-vegetarian meal with plant-based alternatives associate with lower ammoniagenesis in patients with cirrhosis who follow a western diet: a randomized clinical trial
- DOI:
10.1016/s0168-8278(23)00495-6 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:
- 作者:
Andrew Fagan;Bryan Badal;Victoria Tate;Travis Mousel;Mary Leslie Gallagher;Puneet Puri;Michael Fuchs;Brian Davis;Jennifer Miller;Jasmohan S Bajaj - 通讯作者:
Jasmohan S Bajaj
Sa1094 – Factors Influencing Timing of Paracentesis After Hospital Admission
- DOI:
10.1016/s0016-5085(19)37477-3 - 发表时间:
2019-05-01 - 期刊:
- 影响因子:
- 作者:
Eric Ballecer;Jennifer Miller;Jigar Patel;Anthony Razzano;Harry He;Julie Jiang;Alexander Sy;Peter Malet;Raluca Vrabie - 通讯作者:
Raluca Vrabie
Jennifer Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Miller', 18)}}的其他基金
Creating and Sustaining Noyce Mentors en la Frontera: a HSI Collaborative Capacity Building Grant
在拉弗龙特拉创建和维持诺伊斯导师:HSI 协作能力建设补助金
- 批准号:
2345011 - 财政年份:2024
- 资助金额:
$ 26.69万 - 项目类别:
Standard Grant
Noyce Scholars en la Frontera (Noyce Scholars on the Border)
边境的诺伊斯学者 (Noyce Scholars en la Frontera)
- 批准号:
2050173 - 财政年份:2021
- 资助金额:
$ 26.69万 - 项目类别:
Continuing Grant
Developing a Novel Framework for Analyzing Dynamic Interactions in Movement Data
开发用于分析运动数据中的动态交互的新框架
- 批准号:
1424920 - 财政年份:2014
- 资助金额:
$ 26.69万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: Characterizing Land-Management Impacts on Ecosystem Structure in the Botswana Central Kalahari
博士论文研究:描述土地管理对博茨瓦纳中部卡拉哈里生态系统结构的影响
- 批准号:
1203580 - 财政年份:2012
- 资助金额:
$ 26.69万 - 项目类别:
Standard Grant
Collaborative Research: Spatial Inference and Prediction with Biogeographical Data
合作研究:利用生物地理数据进行空间推断和预测
- 批准号:
0832367 - 财政年份:2007
- 资助金额:
$ 26.69万 - 项目类别:
Continuing Grant
Collaborative Research: Spatial Inference and Prediction with Biogeographical Data
合作研究:利用生物地理数据进行空间推断和预测
- 批准号:
0451486 - 财政年份:2005
- 资助金额:
$ 26.69万 - 项目类别:
Continuing Grant
POWRE: Combined Corrosion Assessment Techniques for Evaluating the Effect of Free Chlorine on Aged Cast Iron Water Distribution System Pipes
POWRE:用于评估游离氯对老化铸铁配水系统管道影响的综合腐蚀评估技术
- 批准号:
9870435 - 财政年份:1998
- 资助金额:
$ 26.69万 - 项目类别:
Standard Grant
相似海外基金
Estimation of Crime Risk Areas on Spatial Autocorrelation Analysis based on Situational Crime Prevention Approach
基于情景犯罪预防方法的空间自相关分析犯罪风险区域估计
- 批准号:
23K04068 - 财政年份:2023
- 资助金额:
$ 26.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrated photon autocorrelation and micro-photoluminescence spectroscopy for developing solid-state quantum light emitters for quantum applications
集成光子自相关和微光致发光光谱,用于开发用于量子应用的固态量子光发射器
- 批准号:
RTI-2023-00571 - 财政年份:2022
- 资助金额:
$ 26.69万 - 项目类别:
Research Tools and Instruments
Streaming Tests for Spatial Temporal Autocorrelation
时空自相关的流测试
- 批准号:
564155-2021 - 财政年份:2021
- 资助金额:
$ 26.69万 - 项目类别:
University Undergraduate Student Research Awards
Integrating spatial autocorrelation into location-allocation problems
将空间自相关集成到位置分配问题中
- 批准号:
1951344 - 财政年份:2020
- 资助金额:
$ 26.69万 - 项目类别:
Standard Grant
Autocorrelation of Seismic Ambient Noise and P-wave Coda for Crustal Structure
地壳结构地震环境噪声与纵波尾波的自相关
- 批准号:
1839322 - 财政年份:2019
- 资助金额:
$ 26.69万 - 项目类别:
Continuing Grant
Parallel algorithms for autocorrelation problems
自相关问题的并行算法
- 批准号:
DDG-2017-00024 - 财政年份:2018
- 资助金额:
$ 26.69万 - 项目类别:
Discovery Development Grant
Parallel algorithms for autocorrelation problems
自相关问题的并行算法
- 批准号:
DDG-2017-00024 - 财政年份:2017
- 资助金额:
$ 26.69万 - 项目类别:
Discovery Development Grant
Development of document retrieval method considering document subject and document structure based on autocorrelation function
基于自相关函数考虑文档主题和文档结构的文档检索方法的开发
- 批准号:
16K00160 - 财政年份:2016
- 资助金额:
$ 26.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analyzing the Effects of Spatial Autocorrelation in Geospatial Databases
分析地理空间数据库中空间自相关的影响
- 批准号:
1560907 - 财政年份:2016
- 资助金额:
$ 26.69万 - 项目类别:
Standard Grant
Critical infrastructure: evaluating the effect of network topology and autocorrelation
关键基础设施:评估网络拓扑和自相关的影响
- 批准号:
261872-2011 - 财政年份:2015
- 资助金额:
$ 26.69万 - 项目类别:
Discovery Grants Program - Individual