Miniaturization of Mediatorless Microbial Fuel Cells for High-Throughput Studies of Bacteria-Electrode Interactions
用于细菌-电极相互作用高通量研究的无介体微生物燃料电池小型化
基本信息
- 批准号:0454861
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-15 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports the development of miniaturized microbial fuel cells at the University of Minnesota. These fuel cells will use recently discovered anaerobic bacteria such as Geobacter that can directly transmit electrons to electrode surfaces. The goal is to develop electrical devices that can utilize these bacteria as catalysts and sensors. A new approach will be demonstrated using silicon-based microfabrication techniques and electrodes directly printed on membranes. The planned activity will fabricate and test a series of designs intended to fit in a multiwell plate format, adaptable to other high-throughput platforms. An additional goal is to fabricate microscale flow-through reactors that will create a mechanism for exposing very small populations of bacteria on electrode surfaces to conditions of constant laminar flow for continuous sensing. These devices will reduce instrument size by two orders of magnitude over typical systems, and they will provide researchers with tools to make sensitive, parallel observations related to extracellular electron transport, conversion of organic compounds into electrical signals by bacteria, and processes related to corrosion and metal reduction. These proposed instruments will measure electricity production by bacteria in a device designed to utilize membrane-based electrodes similar to those optimized for state-of-the-art chemical fuel cells. They will also provide a microfabricated interface allowing direct conversion of an organic compound into an electrical signal using electricity producing organisms. The heart of any device converting a chemical into an electrical signal is the catalyst. Examples include fuel cells, which convert hydrogen or liquid methanol fuels directly into electricity, or 'breathalyzers' which use catalysts to convert alcohol into electricity for sensing. Typically, precious metals such as platinum are used as catalysts, and they convert simple gasses or chemicals into electricity. It has recently been discovered that some bacteria in underground aquifers and other oxygen-poor habitats produce energy by transferring electrons to iron minerals present in the sediment. This process of 'iron reduction' essentially involves conversion of organic chemical compounds in the sediment into electrical signals. When these iron-reducing bacteria are grown on electrodes, a full range of sugars, fatty acids, and aromatic compounds can be converted into electricity, suggesting a variety of possible electrical power-generating or sensing devices. Research into this phenomenon is hampered by a lack of devices for studying this unique process, and we propose to use microfabrication and membrane printing techniques to build small microbial "fuel cells" from silicon and conductive materials. By combining our new understanding of the microbiology of this process with advances in electrical engineering and materials science, we will develop instruments to allow simultaneous study of multiple cultures and conditions, and make available the first tools for study of these bacteria as catalysts in miniaturized sensors and other devices.
该奖项支持明尼苏达大学微型微生物燃料电池的开发。 这些燃料电池将使用最近发现的厌氧细菌,如Geophysics,可以直接将电子传输到电极表面。 目标是开发可以利用这些细菌作为催化剂和传感器的电子设备。 一种新的方法将使用硅基微加工技术和电极直接印刷在膜上。 计划中的活动将制造和测试一系列设计,旨在适应多孔板格式,适用于其他高通量平台。 另一个目标是制造微型流通反应器,其将产生用于将电极表面上的非常小的细菌群体暴露于恒定层流条件以进行连续感测的机制。 这些设备将使仪器尺寸比典型系统减少两个数量级,它们将为研究人员提供工具,以进行与细胞外电子传输,细菌将有机化合物转化为电信号以及与腐蚀和金属还原相关的过程相关的敏感,并行观察。 这些拟议中的仪器将测量细菌在一个设备中的发电量,该设备旨在利用类似于最先进的化学燃料电池优化的膜基电极。它们还将提供一种微加工界面,允许使用产电生物将有机化合物直接转化为电信号。 任何将化学物质转化为电信号的装置的核心都是催化剂。 例子包括燃料电池,它将氢或液体甲醇燃料直接转化为电能,或“呼气测醉器”,它使用催化剂将酒精转化为电能用于传感。 通常,贵金属如铂被用作催化剂,它们将简单的气体或化学物质转化为电能。 最近发现,地下含水层和其他缺氧栖息地中的一些细菌通过将电子转移到沉积物中的铁矿物来产生能量。 这种“铁还原”过程主要涉及将沉积物中的有机化合物转化为电信号。 当这些铁还原细菌在电极上生长时,各种各样的糖、脂肪酸和芳香族化合物都可以转化为电能,这意味着各种可能的发电或传感装置。 对这种现象的研究由于缺乏研究这种独特过程的设备而受到阻碍,我们建议使用微细加工和膜印刷技术从硅和导电材料中构建小型微生物“燃料电池”。 通过将我们对这一过程的微生物学的新理解与电气工程和材料科学的进步相结合,我们将开发出能够同时研究多种培养物和条件的仪器,并为研究这些细菌作为微型传感器和其他设备中的催化剂提供第一批工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Bond其他文献
Modeling/Computation A26 Hierarchical Organization of Modularity in Metabolic Networks
建模/计算 A26 代谢网络中模块化的分层组织
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
A. Barabási;A. L. Somera;D. A. Mongru;G. Balazsi;E. Ravasz;S. Y. Gerdes;J. W. Campbell;A. Osterman;Christophe H. Schilling;Radhakrishnan Mahadevan;Sung Park;Evelyn Travnik;Bernhard O. Palsson;C. Maranas;D. Lovley;Daniel Bond;M. Coppi;Jessica Butler;Susan Childers;Teena Metha;C. Leang;Barbara Methé;Carol Giometti;Jonathan Webb;Lois Welber;Arch Owen;J. Delatizky;C. Belta;M. Goulian;Franjo Ivancic;Vijay Kumar;H. Rubin;Jonathan Schug;Oleg Sokolsky - 通讯作者:
Oleg Sokolsky
Microbial nanowires: Cytochrome filaments in <em>Geobacter</em> and more
- DOI:
10.1016/j.bpj.2022.11.2883 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Diana Baquero;Virginija Cvirkaite-Krupovic;Khawla Mustafa;Chiho Chan;Allon Hochbaum;Daniel Bond;Edward H. Egelman;Mart Krupovic;Fengbin Wang - 通讯作者:
Fengbin Wang
Whole body effective dose equivalent dataset for MAX and FAX shielded with Common Aerospace Materials in deep space
- DOI:
10.1016/j.dib.2019.104885 - 发表时间:
2020-02-01 - 期刊:
- 影响因子:
- 作者:
Daniel Bond;Braden Goddard;Robert Singleterry;Sama Bilbao y León - 通讯作者:
Sama Bilbao y León
Daniel Bond的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Bond', 18)}}的其他基金
Collaborative Research: A Model for Divergent Bacterial Signaling Networks; Linking New Cyclic Dinucleotides to Environmental and Electrical Lifestyles
合作研究:不同细菌信号网络的模型;
- 批准号:
1714196 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
SGER: Linking enzymes to light emitting semiconductors for high throughput screening
SGER:将酶与发光半导体连接以进行高通量筛选
- 批准号:
0814646 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant