Transactions between Granular Flow and Solidification: Merging Multiphase Transport with Statistical Mechanics

颗粒流与凝固之间的交流:将多相传输与统计力学相结合

基本信息

  • 批准号:
    0456420
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-04-01 至 2007-03-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT - 0456420Granular physics has undergone a renaissance of interest over the past decade, leading to new and exotic phenomena ranging from solitary oscillons. [Umbanhowar, 1996] to as yet unexplained traveling segregation waves [Choo, 1997]. These and other surprising behaviors continue to be discovered at a regular rate largely because we cannot predict outcomes in granular experiments in advance, as we can in the more analytically mature companion field of fluid dynamics. In restricted regimes, for example for rapid collisional flows, reliable granular models have been developed and proven, but few if any predictive models exist that capture multiple regimes ranging from the solid-like to the fluid-like. Therefore in this proposal, we seek to focus precisely on the interface between solid-like and fluid-like coexisting regions with the ultimate goal of producing an experimentally validated, quantitative, first principles model that spans the solidified-fluidized interface of granular beds. The proposed approach combines detailed experimental measurements of granular density and flow data with an existing analytic model. We will focus our investigations on cascading flow on a disk: a system that has not been extensively studied before, yet reveals a rich variety of states with complex interfaces that I believe can serve as a unique and useful testbed for the investigation of the features of interest. In addition to exhibiting numerous distinct patterned states, the disk system permits us to probe bed responses to centrifugal stress, which will provide unique insights into solidification and fluidization mechanisms. Intellectual Significance It is not currently possible to make generally applicable and practically useful predictions in granular systems where solid-like and fluid-like regions co-exist. Yet this state describes a considerable range arguably even a majority of industrial and geophysical granular systems (see below). The work proposed will generate significant improvements both in quantitative characterization of internal and surface states of such systems and in predictive modeling capabilities. The work will achieve this through the combination of a validated continuum model that permits the accurate simulation of solidified and fluidized regimes simultaneously with the best available experimental techniques including Particle Image Velocimetry of high speed video and X-ray Imaging. The experimental configuration that we will study is unique and permits the evaluation of how granular flow responds to changes in applied compressive stress and induced shear. The computational model has been demonstrated to correctly reproduce complex solid-fluid transitions in granular suspensions, and will be extended to dry grains in this work. This approach will lead to a detailed understanding of internal states within a complex granular bed, to significant advances in rheological modeling of transitional granular flows and, potentially, to a major improvement in predictive modeling capability to problems previously inaccessible to accurate simulation. Broader Implications One does not need to look hard to find broad implications of this research. On the industrial side, the implications are clearcut: as we describe in the proposal introduction, manufacturing efficiencies drop to 60% when granular materials are involved [Nelson, 1995], and taking the pharmaceutical industry as a case in point, entire manufacturing plants and product lines are not infrequently shut down entirely due an inability to scientifically predict outcomes and consequent failures in the reliable design of granular flow and mixing systems [USA, 1994; Muzzio, 2002]. The data that the proposed work will provide will be of direct benefit for the predictive design of industrial systems ranging from tumblers to chutes in which both solidified and fluidized states co-exist. Further afield, in geological systems the proposed work can be applied directly to landslide dynamics, but even within this field, there are broader implications than one might suspect. For example, there remains an unresolved paradox in Martian geophysics in which there is simultaneously strong geomorphological evidence for recent liquid surface water (e.g. sinuous channels) and definitive evidence that surface temperatures and pressures are far below values that could sustain this water [Christensen, 2003; Malin, 1999, 2000]. Into this controversy has been thrown the suggestion that many of the landforms associated with liquid water may in fact have been produced by dry Aeolian processes [Treiman, 2003; Leovy, 2003]. Yet there exists little in the way of fundamental predictive modeling that could definitively confirm or refute this suggestion [Shinbrot, 2004b]. Likewise, in terrestrial geophysics, the energy dissipated by long runout avalanches [Melosh, 1996] and by earthquakes [Scott, 1996] have been measured to be perplexingly small, and the work that we describe stands to shed light on frozen-fluidized granular interactions in these systems as well.
摘要-0456420在过去的十年里,颗粒物理学经历了一次兴趣的复兴,导致了从孤立粒子到新的奇异现象。[Umbanhowar,1996]到至今无法解释的旅行隔离波[Choo,1997]。 这些和其他令人惊讶的行为继续以规律的速度被发现,这主要是因为我们无法提前预测颗粒实验的结果,而我们可以在分析上更成熟的流体动力学领域中预测结果。 在受限状态中,例如对于快速碰撞流,已经开发并证明了可靠的颗粒模型,但是很少存在捕获从固体状到流体状的多个状态的预测模型。 因此,在这个建议中,我们试图精确地集中在固体和流体共存区域之间的界面上,最终目标是产生一个实验验证的,定量的,第一原理模型,该模型跨越颗粒床的凝固-流化界面。 所提出的方法结合了详细的颗粒密度和流量数据的实验测量与现有的分析模型。 我们将重点研究磁盘上的级联流:这个系统以前从未被广泛研究过,但揭示了具有复杂界面的丰富状态,我相信这些状态可以作为研究感兴趣特征的独特且有用的测试平台。 除了表现出许多不同的图案状态,磁盘系统允许我们探测床的离心应力,这将提供独特的见解凝固和流化机制的反应。 目前还不可能在固体和流体共存的颗粒系统中进行普遍适用和实际有用的预测。 然而,这种状态描述了相当大的范围,甚至可以说是大多数工业和地球物理颗粒系统(见下文)。 所提出的工作将产生显着的改善,在定量表征的内部和表面状态的这种系统和预测建模能力。 这项工作将通过一个经过验证的连续模型的结合来实现这一目标,该模型允许同时精确模拟凝固和流化状态,并采用最佳的实验技术,包括高速视频和X射线成像的粒子图像测速。 我们将研究的实验配置是独特的,并允许颗粒流如何响应于施加的压缩应力和诱导剪切的变化进行评估。 计算模型已被证明可以正确地再现复杂的固体-流体在颗粒悬浮液中的转变,并将在这项工作中扩展到干颗粒。 这种方法将导致一个复杂的颗粒床内的内部状态的详细了解,过渡颗粒流的流变学建模的重大进展,并有可能在预测建模能力的重大改进,以前无法准确模拟的问题。更广泛的影响人们不需要努力寻找这项研究的广泛影响。 在工业方面,影响是明确的:正如我们在提案介绍中所描述的,当涉及颗粒材料时,制造效率下降到60%[纳尔逊,1995],并且以制药工业为例,由于无法科学地预测结果和可靠的生产过程中随之发生的故障,整个制造工厂和生产线经常完全关闭。颗粒流和混合系统的设计[USA,1994; Muzzio,2002]。 所提出的工作将提供的数据将是直接有益的工业系统的预测设计,从转鼓到溜槽,其中凝固和流化状态共存。在更远的地方,在地质系统中,所提出的工作可以直接应用于滑坡动力学,但即使在这个领域内,也有比人们想象的更广泛的影响。 例如,在火星水物理学中仍然存在一个未解决的悖论,其中同时存在强烈的地貌证据表明最近的液态表面水(例如蜿蜒的通道)和明确的证据表明表面温度和压力远远低于可以维持这种水的值[Christensen,2003; Malin,1999,2000]。 在这场争论中,有人提出,许多与液态水有关的地貌实际上可能是由干燥的风成作用产生的[Treiman,2003; Leovy,2003]。 然而,几乎没有基本的预测模型可以明确地证实或反驳这一建议[Shinbrot,2004 b]。 同样,在地球物理学中,长距离雪崩[Melosh,1996]和地震[Scott,1996]所耗散的能量已经被测量为令人困惑的小,我们所描述的工作也揭示了这些系统中的冻结流化颗粒相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Troy Shinbrot其他文献

Drat such custard!
哎呀,这样的蛋奶沙司真讨厌!
  • DOI:
    10.1038/438922a
  • 发表时间:
    2005-12-14
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Troy Shinbrot
  • 通讯作者:
    Troy Shinbrot
Long-standing and unresolved issues in triboelectric charging
摩擦带电中长期存在且未解决的问题
  • DOI:
    10.1038/s41570-019-0115-1
  • 发表时间:
    2019-07-15
  • 期刊:
  • 影响因子:
    51.700
  • 作者:
    Daniel J. Lacks;Troy Shinbrot
  • 通讯作者:
    Troy Shinbrot
Academic decision-making.
学术决策。
  • DOI:
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    Troy Shinbrot
  • 通讯作者:
    Troy Shinbrot
Static in motion
动态中的静态
  • DOI:
    10.1038/451773a
  • 发表时间:
    2008-02-13
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Troy Shinbrot;Hans J. Herrmann
  • 通讯作者:
    Hans J. Herrmann
eccrine porocarcinomaの1例
小汗腺汗孔癌一例
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kerri-Ann Norton;Semeera Namazi;Mariko Fujibayashi;Shridar Ganesan;Nicola Barnard;Gyan Bhanot;Troy Shinbrot;Hitoshi Iyatomi;and Koichi Ogawa;羽田孝司
  • 通讯作者:
    羽田孝司

Troy Shinbrot的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Troy Shinbrot', 18)}}的其他基金

Effects of electrostatics on granular dynamics
静电对颗粒动力学的影响
  • 批准号:
    1804286
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Electrostatic precursors to granular slip events
颗粒滑移事件的静电前兆
  • 批准号:
    1404792
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
GOALI - The Effects of Triboelectrification on Granular Flow, Mixing and Segregation
GOALI - 摩擦起电对颗粒流动、混合和分离的影响
  • 批准号:
    0827404
  • 财政年份:
    2008
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Mathematics of Neurite Outgrowth and Pathfinding
神经突生长和寻路的数学
  • 批准号:
    0424882
  • 财政年份:
    2005
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Gordon Research Conference on Granular & Granular-Fluid Flows
戈登粒度研究会议
  • 批准号:
    0209414
  • 财政年份:
    2002
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Instabilities and Waves in Sheared Granular Materials
剪切颗粒材料中的不稳定性和波动
  • 批准号:
    0200821
  • 财政年份:
    2002
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Granular Shear Instabilities: Oscillations, Waves and Rolls?
粒状剪切不稳定性:振荡、波浪和滚动?
  • 批准号:
    0070591
  • 财政年份:
    2000
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: Elasto-Granular Interactions Between Morphing Skins and Soils
合作研究:变形皮肤和土壤之间的弹力颗粒相互作用
  • 批准号:
    2228271
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Elasto-Granular Interactions Between Morphing Skins and Soils
合作研究:变形皮肤和土壤之间的弹力颗粒相互作用
  • 批准号:
    2228272
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Clarification of Factors on Friction Reduction between Granular Materials and Walls with Ultrasonic Vibration
超声振动减少粒状材料与墙体摩擦的因素的阐明
  • 批准号:
    19K05129
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dissipative structure in granular segregation: cross-talk between rheology and interface dynamics
颗粒偏析中的耗散结构:流变学和界面动力学之间的串扰
  • 批准号:
    19K14614
  • 财政年份:
    2019
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EAGER: Modeling the Interaction Physics between Soft-structures and Granular Materials
EAGER:模拟软结构和颗粒材料之间的相互作用物理
  • 批准号:
    1837662
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Simulation study on interaction between spheres moving quasistatically in granular bed
颗粒床内准静​​态运动球体相互作用的模拟研究
  • 批准号:
    15K13534
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Cross-talk between phase separation and global convection of granular materials
颗粒材料的相分离和整体对流之间的串扰
  • 批准号:
    26800201
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A competition between phase transition dynamics and the nonlinear rheology in granular matter
颗粒物质中相变动力学与非线性流变学之间的竞争
  • 批准号:
    25800234
  • 财政年份:
    2013
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Plasticity and Avalanches: Connections Between Systems Ranging from Metals to Granular Materials
塑性和雪崩:从金属到颗粒材料的系统之间的连接
  • 批准号:
    1005209
  • 财政年份:
    2010
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Competition between two dynamics : interface motion and collective motion of granular particles
两种动力学之间的竞争:界面运动和颗粒的集体运动
  • 批准号:
    21740293
  • 财政年份:
    2009
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了