Continuation of an Investigation of Certain Operators and Operator Algebras
继续研究某些算子和算子代数
基本信息
- 批准号:0456448
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-01 至 2008-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI will continue the research that he has been pursuing under the support of the National Science Foundation. The specific areas of the proposed research include the following: (1) Hankel operators on certain reproducing-kernel Hilbert spaces. Here the main question is the membership of these operators in various norm ideals. The reproducing kernel will be involved in many quantitative estimates. (2) Factorization of unimodular functions on the unit sphere. The goal here is to determine whether or not certain well-known factorization for unimodular functions in the one-variable case can be generalized to the case of several variables. (3) Simultaneous diagonalization of commuting tuples of self-adjoint operators modulo various norm ideals. This problem has been solved (with NSF support) in the case where the norm ideal is the Schatten p-class when p is strictly greater than 1. The PI will next consider the case where p is 1, i.e., where the norm ideal is the trace class. This is a difficult problem, but this is also an important problem because of its potential applications. The PI will also consider a class of ideals which are related to the Schatten class. (4) Certain norm estimates related to the Cauchy projection on the unit sphere. If they can be established, these estimates will provide new insight on the Cauchy projection.The intellectual merit of the proposed research is that it pushes the limit of some of the existing techniques and it helps us better understand the structure of the spaces, operators and operator ideals mentioned above. The proposed problems are fairly representative of the current research interests in operator theory and operator algebras, which is a study of, among other things, the spectral properties of various linear operators. In part inspired and demanded by the development of the quantum theory in the early part of the twentieth century, this study was initiated by great mathematicians such as H. Weyl and J. von Neumann. Because additivity (i.e., linearity) appears in many fundamental aspects of nature, operator theory provides the right mathematical tools for scientific fields ranging from atomic physics to optimal control. Many abstract problems in operator theory and operator algebras owe their origin to these fields of applications. In this sense the broader impact of research in operator theory and operator algebras is its contribution to our understanding of the physical world. For example, both for theoretical reasons and for practical applications, quite often one must deal with, or introduce, perturbations which are "small" by some measure or other. Problem (3) is about such perturbations. The root of this problem can be traced back to a paper of Weyl published in 1909, which asserts that a continuous spectrum can be turned into a discrete one by a compact (which is a measure of "smallness") perturbation. The problems proposed here require both modern techniques and classical-style mathematical analysis. A theme which underlies all these problems is the establishment of various estimates (i.e., bounds). In general, the sharper the estimates, the better results one obtains.
PI将继续在国家科学基金会的支持下进行他一直在进行的研究。拟议研究的具体领域包括以下几个方面:(1)某些再生核Hilbert空间上的Hankel算子。这里的主要问题是这些运营商在各种规范理想的成员。再生核将涉及到许多定量估计。(2)单位球面上幺模函数的因子分解。这里的目标是确定在单变量情况下的单模函数的某些众所周知的因式分解是否可以推广到多个变量的情况。(3)模各种范数理想自伴算子交换元组的同时对角化。这个问题已经解决了(在NSF的支持下),当p严格大于1时,范数理想是Schatten p类。PI接下来将考虑p为1的情况,即,其中范数理想是迹类。 这是一个困难的问题,但由于其潜在的应用,这也是一个重要的问题。PI还将考虑一类与Schatten类相关的理想。(4)单位球面上柯西投影的某些范数估计。如果它们能够成立,这些估计将为柯西投影提供新的见解。拟议研究的智力价值在于,它推动了一些现有技术的极限,并有助于我们更好地理解上述空间,算子和算子理想的结构。 所提出的问题是相当有代表性的当前的研究兴趣,在运营商理论和运营商代数,这是一个研究,除其他事项外,各种线性算子的谱特性。 这一研究在一定程度上受到了世纪早期量子理论发展的启发和要求,由伟大的数学家如H。Weyl和J. von Neumann。因为可加性(即,线性)出现在自然界的许多基本方面,算子理论为从原子物理学到最优控制等科学领域提供了正确的数学工具。算子理论和算子代数中的许多抽象问题都起源于这些应用领域。 从这个意义上说,算子理论和算子代数研究的更广泛影响是它对我们理解物理世界的贡献。 例如,为了理论上的原因和实际应用,人们常常必须处理或引入某种程度上“小”的扰动。 问题(3)是关于这种扰动的。 这个问题的根源可以追溯到Weyl在1909年发表的一篇论文,该论文声称连续光谱可以通过紧凑(这是一种“小”的度量)扰动变成离散光谱。 这里提出的问题需要现代技术和古典风格的数学分析。 所有这些问题背后的一个主题是建立各种估计(即,边界)。 一般来说,估计值越精确,得到的结果就越好。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jingbo Xia其他文献
DIXMIER TRACES, CESARO MEANS AND LOGARITHMS
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Jingbo Xia - 通讯作者:
Jingbo Xia
On the Ground State Energy of the¶Fractional Quantum Hall Effect
- DOI:
10.1007/s002200050643 - 发表时间:
1999-07-01 - 期刊:
- 影响因子:2.600
- 作者:
Jingbo Xia - 通讯作者:
Jingbo Xia
Trace-class membership for antisymmetric sums on quotient modules of the hardy module
- DOI:
10.1016/j.jfa.2024.110464 - 发表时间:
2024-04 - 期刊:
- 影响因子:1.7
- 作者:
Jingbo Xia - 通讯作者:
Jingbo Xia
The K-theory and the invertibility of almost periodic Toeplitz operators
K 理论和几乎周期托普利茨算子的可逆性
- DOI:
10.1007/bf01272122 - 发表时间:
1988 - 期刊:
- 影响因子:0.8
- 作者:
Jingbo Xia - 通讯作者:
Jingbo Xia
Another Look at the Invariance Principle for Wave Operators
- DOI:
10.1007/s00220-002-0747-7 - 发表时间:
2003-01-01 - 期刊:
- 影响因子:2.600
- 作者:
Jingbo Xia - 通讯作者:
Jingbo Xia
Jingbo Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jingbo Xia', 18)}}的其他基金
Certain operators and operator algebras in perturbation theory and on function spaces
微扰理论和函数空间中的某些算子和算子代数
- 批准号:
0100249 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Some Problems in Operator Theory and Operator Algebras
算子理论和算子代数的一些问题
- 批准号:
9703515 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Certain C*-Algebras of Toeplitz Operators and Singular Integral Operators
Toeplitz 算子和奇异积分算子的某些 C* 代数
- 批准号:
9400600 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: C*-Algebras of Singular Integral Operators and Toeplitz Operators Associated with N-Densional Flows
数学科学:与 N 稠密流相关的奇异积分算子和 Toeplitz 算子的 C* 代数
- 批准号:
9101496 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: The K-Theory and Isomorphism Invariants of Toeplitz Algebras
数学科学:托普利茨代数的 K 理论和同构不变量
- 批准号:
8821342 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Spectral Duality of Differential Operators Affiliated to von Neumann Algebras
数学科学:冯诺依曼代数微分算子的谱对偶性
- 批准号:
8717185 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral Convergence and Generalized Wave Operators
数学科学:谱收敛和广义波算子
- 批准号:
8602194 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
The Smart Tourism Experience: A Tourist-Centric Conceptualization and Empirical Investigation
智慧旅游体验:以游客为中心的概念化与实证研究
- 批准号:
24K15533 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
- 批准号:
2331199 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
- 批准号:
2400087 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
- 批准号:
2134594 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Investigation on naphthylisoquinoline alkaloids as potential antiausterity chemotherapy for pancreatic cancer
萘基异喹啉生物碱作为胰腺癌潜在抗紧缩化疗的研究
- 批准号:
23K26797 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of crosstalk between Fanconi Anemia pathway and ATM for novel therapeutic strategies of chemoresistant ALT-positive high-risk neuroblastoma
范可尼贫血通路与 ATM 之间的串扰研究,用于化疗耐药 ALT 阳性高危神经母细胞瘤的新治疗策略
- 批准号:
24K10442 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A genome wide investigation into the roles of error-prone polymerases during human DNA replication
对易错聚合酶在人类 DNA 复制过程中的作用进行全基因组研究
- 批准号:
24K18094 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
A Multi-Level Investigation of Engagement in Technology Transfer
参与技术转让的多层次调查
- 批准号:
2345612 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: AGS-FIRP Track 2--Process Investigation of Clouds and Convective Organization over the atLantic Ocean (PICCOLO)
合作研究:AGS-FIRP Track 2——大西洋上空云和对流组织的过程调查(PICCOLO)
- 批准号:
2331200 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant