Interactions Between Random Matrix Theory, Number Theory and Combinatorics
随机矩阵理论、数论和组合学之间的相互作用
基本信息
- 批准号:0501245
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Gamburd Abstract Proposal #0501245The principal investigator plans to pursue two projects devoted tothe study of interactions between random matrix theory, numbertheory and combinatorics. In the first project, building on hisrecent joint work with Persi Diaconis and with Brian Conrey, the principal investigator will explore connections between thedistribution of the secular coefficients of random matrices, theconjectures of Conrey, Farmer, Keating, Rubinstein and Snaithfor moments of L-functions, and some classical problems in enumerative combinatorics related to counting magic squares. The second project of the principal investigator is devoted to studying from a unified point of view one of the main problems in the theory of expander graphs and one of the basic conjectures in the theory of quantum chaos. A basic problem in the theory of expander graphs, formulated by Lubotzky and Weiss, is to what extent being an expander family for a family of Cayley graphs is aproperty of the groups alone, independent of the choice of generators.For many natural families of groups, in particular, for special lineargroup of order two, numerical experiments indicate that it mightbe an expander family for generic choices of generators(Independence Conjecture). A basic conjecture in Quantum Chaos,formulated by Bohigas, Giannoni, and Shmit, asserts that theeigenvalues of a quantized chaotic Hamiltonian behave like thespectrum of a typical member of the appropriate ensemble of randommatrices. Both conjectures can be viewed as asserting that adeterministically constructed spectrum generically behaves likethe spectrum of a large random matrix: in the bulk (QuantumChaos Conjecture) and at the edge of the spectrum (IndependenceConjecture). The principal investigator will work on proving theseconjectures in the context of the spectra of elements in group rings.Random Matrix Theory originated in Wigner's suggestion in theearly fifties that the resonance lines of heavy nuclei might bemodelled by the spectrum of a large random matrix. In the ensuingfifty years the scope and depth of Random Matrix Theory hasdramatically increased; in the past decade the subject hasundergone explosive growth. The first project of the principalinvestigator aims at forging a link between two recent lines ofdevelopment in Random Matrix Theory. One is the discovery andexploitation of the connections between eigenvalue statistics andthe longest-increasing subsequence problems in enumerativecombinatorics; another is the outburst of interest incharacteristic polynomials of random matrices and associatedglobal statistics, particularly in relation with the moments ofthe Riemann zeta function, a function of fundamental importance innumber theory. The second project of the principal investigatoris devoted to studying connections between random matrices and expander graphs -- highly connected sparse graphs that efficientlypropagate information quickly to many nodes along short paths. Recentexplicit constructions of such graphs have created an explosion ofinterest in their potential applications to network design, complexitytheory, coding theory and cryptography. These constructions are algebraicin nature, and provide a beautiful example of how abstract, seeminglyunrelated topics in number theory, group theory and combinatorics can be elegantly combined to solve an important real-world problem.
Gamburd摘要 提案#0501245主要研究者计划进行两个项目,致力于研究随机矩阵理论,数论和组合学之间的相互作用。在第一个项目中,基于他最近与Persi Diaconis和Brian Conrey的联合工作,主要研究者将探索随机矩阵的长期系数的分布,Conrey,Farmer,Keating,Rubinstein和Snaithfor L-函数矩的猜想之间的联系,以及与计数幻方有关的枚举组合学中的一些经典问题。主要研究者的第二个项目致力于从统一的角度研究扩展图理论中的主要问题之一和量子混沌理论中的基本原理之一。Lubotzky和韦斯提出的扩张图理论中的一个基本问题是,在多大程度上Cayley图族的扩张族是群本身的性质,而与生成元的选择无关。数值实验表明,它可能是生成元一般选择的一个扩展族(独立猜想)。Bohigas、Giannoni和Shmit提出了量子混沌中的一个基本猜想,认为量子混沌哈密顿量的本征值的行为类似于随机矩阵适当系综的典型成员的谱。这两个猜想都可以被看作是断言一个确定性构造的谱一般表现得像一个大的随机矩阵的谱:在体(量子混沌猜想)和在谱的边缘(独立猜想)。随机矩阵理论起源于魏格纳在五十年代早期提出的重核共振线可以用一个大的随机矩阵的谱来模拟的建议。在随后的五十年里,随机矩阵理论的广度和深度都有了显著的提高,在过去的十年里,这门学科经历了爆炸式的增长.主要研究者的第一个项目旨在建立随机矩阵理论中两条最近发展路线之间的联系。 一个是发现和利用特征值统计之间的联系和最长增长的子序列问题的计数组合;另一个是兴趣的爆发,在特征多项式的随机矩阵和相关的整体统计,特别是与时刻的黎曼zeta函数,一个功能的根本重要性在数论。 第二个项目的主要作者是致力于研究随机矩阵和扩展图之间的连接-高度连接的稀疏图,有效地传播信息迅速到许多节点沿着短路径。最近,这种图的显式构造在网络设计、复杂性理论、编码理论和密码学等方面的潜在应用引起了人们极大的兴趣。这些结构是代数性质的,并提供了一个美丽的例子,说明如何将数论,群论和组合学中抽象的,不相关的主题优雅地结合起来解决一个重要的现实问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Gamburd其他文献
Alexander Gamburd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Gamburd', 18)}}的其他基金
Markoff Surfaces and Superstrong Approximation
马尔可夫曲面和超强逼近
- 批准号:
1603715 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Expander Graphs: Interactions between Arithmetic, Group Theory and Combinatorics
职业:扩展图:算术、群论和组合学之间的相互作用
- 批准号:
0645807 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Expander Graphs, Random Matrices, and Quantum Chaos
扩展图、随机矩阵和量子混沌
- 批准号:
0102023 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Fellowship Award
相似海外基金
Applications of multilevel modelling: An evaluation of the assumption of no correlation between explanatory variables and random effects
多级建模的应用:解释变量与随机效应之间不相关的假设的评估
- 批准号:
2604266 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship
Randomly perturbed graphs: Problems between random and extremal graph theory
随机扰动图:随机图论与极值图论之间的问题
- 批准号:
422062814 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Fellowships
Strong random number generation from body physiological signals for secure communication between implants inside the body and the gateway outside the body
根据身体生理信号生成强大的随机数,用于体内植入物与体外网关之间的安全通信
- 批准号:
133673 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Feasibility Studies
Strong random number generation from body physiological signals for secure communication between implants inside the body and the gateway outside the body
根据身体生理信号生成强大的随机数,用于体内植入物与体外网关之间的安全通信
- 批准号:
133566 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Feasibility Studies
Using Random Forest Probability Machines to examine the association between maternal health in pregnancy and child health outcomes
使用随机森林概率机检查妊娠期孕产妇健康与儿童健康结果之间的关联
- 批准号:
496746-2016 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
CIF: Small: Massive Uncoordinated and Sporadic Multiple Access -- Strengthening Connections between Coding and Random Access
CIF:小型:大规模不协调和零星多址——加强编码和随机接入之间的联系
- 批准号:
1619085 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Comparing non-voting political participation between Japan and the US: A causal inference using the Internet survey with a random sample
日本和美国无投票权政治参与的比较:基于随机样本的互联网调查的因果推断
- 批准号:
15H03317 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
A study on relationships between stochastic and quantum models and random graph structures
随机和量子模型与随机图结构之间关系的研究
- 批准号:
23740093 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Nonlinear interactions between random waves and vortices
随机波和涡旋之间的非线性相互作用
- 批准号:
1009213 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Synergistic interactions between Numerical Linear Algebra and Stochastic Eigenanalysis (Random Matrix Theory)
职业:数值线性代数和随机特征分析(随机矩阵理论)之间的协同相互作用
- 批准号:
0847661 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant