Affine Structures, Non-archimedean Analytic Geometryand Mirror Symmetry
仿射结构、非阿基米德解析几何和镜像对称
基本信息
- 批准号:0504048
- 负责人:
- 金额:$ 11.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2008-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0504048Principal Investigator: Yan SoibelmanThe project is devoted to the study of the relationship betweenmanifolds with integral affine structure and Calabi-Yau manifolds overnon-archimedean fields. It offers a new approach to HomologicalMIrror Symmetry based on the ideas of collapsing Calabi-Yau manifoldsdeveloped jointly by P.I. and Maxim Kontsevich. Part of the researchis devoted to an unexpected analogy between classical integrablesystems and Calabi-Yau manifolds over non-archimedean fields. Thisanalogy leads to different approaches to integral affine structures:one is via a kind of Liouville integrability and another one via thenotion of skeleton introduced by P.I. and Kontsevich. The problem ofreconstructing a non-archimedean space from the skeleton with(singular) integral affine structure is raised. The solution is givenfor K3 surfaces. Non-commutative version of the above analogy is alsoa part of the project.One of the most challenging problems of modern physics is theunification of all known forces under the roof of onetheory. Most promising candidate for such unification is StringTheory. It is far from being finished. Proposed research isdevoted to mathematical foundations of Mirror Symmetry, which isone of the better understood parts of String Theory. It is alsodevoted to unexpected mathematical analogies motivated by MirrorSymmetry. Hopefully this researh will give new theoretical toolsfor study microstructure of our world via better understanding ofthe underlying local geometry.
项目负责人:Yan soibelman本项目主要研究具有整体仿射结构的流形与非阿基米德场的Calabi-Yau流形之间的关系。它基于P.I.和Maxim Kontsevich共同提出的Calabi-Yau流形的坍缩思想,提供了一种新的同调镜像对称方法。部分研究致力于经典可积系统与非阿基米德场上的Calabi-Yau流形之间的意想不到的类比。这种类比导致了研究整体仿射结构的不同方法:一种是通过一种Liouville可积性,另一种是通过P.I.和Kontsevich引入的骨架概念。提出了由具有(奇异)积分仿射结构的骨架重构非阿基米德空间的问题。给出了K3表面的解。上述类比的非交换版本也是该项目的一部分。现代物理学中最具挑战性的问题之一是把所有已知的力统一在一个理论的屋檐下。这种统一最有希望的候选者是StringTheory。它远未完成。拟议的研究致力于镜像对称的数学基础,这是弦理论中较容易理解的部分之一。它还致力于由MirrorSymmetry激发的意想不到的数学类比。希望这项研究能够通过更好地理解潜在的局部几何,为研究我们世界的微观结构提供新的理论工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yan Soibelman其他文献
Spherical adjunctions of stable $$\infty $$ -categories and the relative S-construction
- DOI:
10.1007/s00209-024-03549-x - 发表时间:
2024-07-11 - 期刊:
- 影响因子:1.000
- 作者:
Tobias Dyckerhoff;Mikhail Kapranov;Vadim Schechtman;Yan Soibelman - 通讯作者:
Yan Soibelman
Asymptotics of a condenser capacity and invariants of Riemannian submanifolds
- DOI:
10.1007/bf02433453 - 发表时间:
1996-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Yan Soibelman - 通讯作者:
Yan Soibelman
Yan Soibelman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yan Soibelman', 18)}}的其他基金
Algebra of the infrared, Fukaya-Seidel categories and wall-crossing formulas
红外代数、Fukaya-Seidel 范畴和穿墙公式
- 批准号:
1507316 - 财政年份:2015
- 资助金额:
$ 11.3万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Wall-crossings in Geometry and Physics
FRG:合作研究:几何和物理的跨越
- 批准号:
1265228 - 财政年份:2013
- 资助金额:
$ 11.3万 - 项目类别:
Standard Grant
Cohomological Hall algebra and motivic Donaldson-Thomas invariants
上同调霍尔代数和动机唐纳森-托马斯不变量
- 批准号:
1101554 - 财政年份:2011
- 资助金额:
$ 11.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Quantum Kac-Moody Groups and RelatedQuestions
数学科学:量子 Kac-Moody 群及相关问题
- 批准号:
9623327 - 财政年份:1996
- 资助金额:
$ 11.3万 - 项目类别:
Standard Grant
相似海外基金
Pioneering a non-destructive investigation method for multi-layered stone structures utilizing the permeability of cosmic ray muons
首创利用宇宙射线μ介子渗透性对多层石结构进行无损检测的方法
- 批准号:
23K17276 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Advanced diagnostics of aircraft structures using automated non-invasive imaging techniques
使用自动化非侵入性成像技术对飞机结构进行高级诊断
- 批准号:
2878991 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别:
Studentship
Understanding novel glycosylation systems by non-membrane Organelle-like structures of giant viruses
通过巨型病毒的非膜细胞器样结构了解新型糖基化系统
- 批准号:
23K18099 - 财政年份:2023
- 资助金额:
$ 11.3万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Macroscopic structures governed by electron dynamics in non-equilibrium plasmas
非平衡等离子体中电子动力学控制的宏观结构
- 批准号:
22H01195 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation into Hyperspectral Imaging as a Non-Destructive Testing Technique of Aircraft Structures
高光谱成像作为飞机结构无损检测技术的研究
- 批准号:
2750868 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别:
Studentship
Developing a genomic toolkit to identify RNAs within non-canonical DNA structures
开发基因组工具包来识别非规范 DNA 结构中的 RNA
- 批准号:
10708851 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别:
An arts-based approach to understanding what shapes the intimate adult relationships of parents in non- traditional family structures
以艺术为基础的方法来理解是什么塑造了非传统家庭结构中父母的亲密成人关系
- 批准号:
2726677 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别:
Studentship
Risk-based evaluation and optimization of friction devices for seismic retrofits of non-ductile building structures in Canada
加拿大非延性建筑结构抗震改造摩擦装置的基于风险的评估和优化
- 批准号:
571967-2022 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别:
Alliance Grants
Collaborative Research: Intrinsic Gas-Phase Acid-Base Properties and Structures of Non-Protein Amino Acids and Non-Protein Amino Acid-Containing Peptides
合作研究:非蛋白质氨基酸和非蛋白质氨基酸肽的内在气相酸碱性质和结构
- 批准号:
2154538 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别:
Standard Grant
Developing a genomic toolkit to identify RNAs within non-canonical DNA structures
开发基因组工具包来识别非规范 DNA 结构中的 RNA
- 批准号:
10506451 - 财政年份:2022
- 资助金额:
$ 11.3万 - 项目类别: