Cohomological Hall algebra and motivic Donaldson-Thomas invariants
上同调霍尔代数和动机唐纳森-托马斯不变量
基本信息
- 批准号:1101554
- 负责人:
- 金额:$ 12.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is an example of a successful interaction of ideas originated in physics with those in mathematics. Mathematically, the project is devoted to an approach to motivic Donaldson-Thomas invariants based on the new mathematical object, called Cohomological Hall algebra. It was introduced in the joint work of PI and Maxim Kontsevich. Proposed work simplifies some old results in the area (e.g. it gives a transparent explanation of the so-called wall-crossing formulas which show how Donaldson-Thomas invariants depend on a stability condition). It also opens new directions of work. Some of them have already attracted attention of mathematical community (e.g. the conjecture about the structure of Cohomological Hall algebra for symmetric quiver). The approach is developed in the framework of quivers with potential. The latter give rise to 3-dimensional Calabi-Yau categories generated by critical points of the potential. Donaldson-Thomas invariants are defined in terms of the sheaf of vanishing cycles of the potential. Cohomological Hall algebra encodes the structure of the cohomology of Milnor fiber of the potential near the critical locus. This makes a link with the earlier work of the PI and Kontsevich on the approach to motivic Donaldson-Thomas invariants which utilizes motivic integration. The new approach is more direct and easier. The interplay between quivers and categories mentioned above is used in both directions, e.g. in the course of study of the behavior of Donaldson-Thomas invariants with respect to mutations. This leads to an interesting application to cluster transformations. Furthermore, the analogy with Chern-Simons theory suggests a new application to topological invariants of 3-dimensional manifolds. From another perspective, Cohomological Hall algebra is a mathematical incarnation of the algebra of BPS states envisioned by string theorists in the middle of 90's. Motivic Donaldson-Thomas invariants correspond to refined BPS states in some supersymmetric theories. In a sense the project gives first mathematically rigorous definition of the notion of BPS state (and refined BPS state) which is ``model independent". Wall-crossing formulas for BPS states, which play a role e.g. in the conjectures about the entropy of black holes, can be written in a new non-trivial way and proven mathematically. Maybe this is one of the reasons for the attention of different groups of physicists to the results of the project. Growing interest to the new approach has already generated a flow of papers written by senior and young researchers in both physics and mathematics communities. Several conferences and workshops recently organized in the US, Europe and Japan were influenced by the developments related to the project.
该项目是一个成功的例子,互动的想法起源于物理学与数学。在数学上,该项目致力于基于新的数学对象(称为上同调霍尔代数)的动机唐纳森-托马斯不变量的方法。它是在PI和Maxim Kontsevich的联合工作中引入的。建议的工作简化了一些旧的结果在该地区(例如,它给出了一个透明的解释,所谓的跨壁公式,显示如何唐纳森-托马斯不变量依赖于稳定性条件)。它还开辟了新的工作方向。其中一些猜想已经引起了数学界的关注(如关于对称环的上同调Hall代数结构的猜想)。该方法是在具有潜力的颤抖的框架中开发的。后者产生的三维卡-丘范畴所产生的临界点的潜力。唐纳森-托马斯不变量是根据势的消失圈层定义的。上同调Hall代数描述了临界点附近势的Milnor纤维的上同调结构。这与PI和Kontsevich关于利用动机整合的动机Donaldson-Thomas不变量的方法的早期工作有关。新方法更直接、更容易。上面提到的颤抖和范畴之间的相互作用可以在两个方向上使用,例如在研究唐纳森-托马斯不变量关于突变的行为的过程中。这就引出了一个有趣的集群转换应用。此外,与陈-西蒙斯理论的类比提出了一个新的应用,以拓扑不变量的三维流形。从另一个角度看,上同调Hall代数是90年代中期弦理论家设想的BPS态代数的数学化身。Motivic Donaldson-Thomas不变量对应于某些超对称理论中的精化BPS态。从某种意义上说,该项目首先给出了BPS状态(和改进的BPS状态)概念的数学严格定义,这是“模型独立”的。BPS态的过壁公式,例如在黑洞熵的理论中起作用,可以用一种新的非平凡的方式来写,并在数学上得到证明。也许这就是不同物理学家群体对该项目结果的关注的原因之一。对这种新方法的兴趣越来越大,已经产生了物理和数学界资深和年轻研究人员撰写的大量论文。最近在美国、欧洲和日本组织的几次会议和研讨会受到了与该项目有关的发展的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yan Soibelman其他文献
Spherical adjunctions of stable $$\infty $$ -categories and the relative S-construction
- DOI:
10.1007/s00209-024-03549-x - 发表时间:
2024-07-11 - 期刊:
- 影响因子:1.000
- 作者:
Tobias Dyckerhoff;Mikhail Kapranov;Vadim Schechtman;Yan Soibelman - 通讯作者:
Yan Soibelman
Asymptotics of a condenser capacity and invariants of Riemannian submanifolds
- DOI:
10.1007/bf02433453 - 发表时间:
1996-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Yan Soibelman - 通讯作者:
Yan Soibelman
Yan Soibelman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yan Soibelman', 18)}}的其他基金
Algebra of the infrared, Fukaya-Seidel categories and wall-crossing formulas
红外代数、Fukaya-Seidel 范畴和穿墙公式
- 批准号:
1507316 - 财政年份:2015
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Wall-crossings in Geometry and Physics
FRG:合作研究:几何和物理的跨越
- 批准号:
1265228 - 财政年份:2013
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
Affine Structures, Non-archimedean Analytic Geometryand Mirror Symmetry
仿射结构、非阿基米德解析几何和镜像对称
- 批准号:
0504048 - 财政年份:2005
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
Mathematical Sciences: Quantum Kac-Moody Groups and RelatedQuestions
数学科学:量子 Kac-Moody 群及相关问题
- 批准号:
9623327 - 财政年份:1996
- 资助金额:
$ 12.99万 - 项目类别:
Standard Grant
相似国自然基金
可压缩Hall-MHD方程组的数学理论研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
外部三角范畴的Hall代数与丛理论
- 批准号:12301042
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
稀土织构影响镁合金Hall-Petch关系的机理研究
- 批准号:52301150
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
有限群的Hall子群与X-次极大子群相关的一些公开问题的研究
- 批准号:12371021
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
i-量子广义代数及其Hall代数实现
- 批准号:12271447
- 批准年份:2022
- 资助金额:47 万元
- 项目类别:面上项目
量子丛代数通过Hall代数方法的研究
- 批准号:12271257
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
i-量子群的Hall代数实现和几何实现
- 批准号:12171333
- 批准年份:2021
- 资助金额:51 万元
- 项目类别:面上项目
广义Frobenius范畴的modified Ringel-Hall代数
- 批准号:12001107
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
太赫兹自由电子激光辐照下单层MoS2、WS2的光探测Hall效应研究
- 批准号:U1930116
- 批准年份:2019
- 资助金额:48.0 万元
- 项目类别:联合基金项目
子群的Hall嵌入性及群系剩余与有限群结构的研究
- 批准号:11901417
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantum Hall plasmon resonator-based qubit sensing and multi-qubit coupling
基于量子霍尔等离子体谐振器的量子位传感和多量子位耦合
- 批准号:
24K06915 - 财政年份:2024
- 资助金额:
$ 12.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an Ablative Propellant Hall Thruster
烧蚀推进剂霍尔推进器的开发
- 批准号:
23K17796 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Derived categories and Hall algebras
派生范畴和霍尔代数
- 批准号:
22KJ1524 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigation of spontaneous thermal Hall effects in a chiral superconductor
手性超导体中自发热霍尔效应的研究
- 批准号:
23H01116 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Understanding and Controlling Oscillation Phenomena of Hall Thruster by Virtual Cathode Region Deformation Theory
用虚拟阴极区域变形理论理解和控制霍尔推进器振荡现象
- 批准号:
23H01599 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Cohomological Hall Algebras of Calabi-Yau 3-folds
Calabi-Yau 3 次上同调霍尔代数
- 批准号:
EP/X040674/1 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Research Grant
CAREER: Quantum spin liquids meet spintronics: Theory of probing quantum spin liquids with spin Hall effects
职业:量子自旋液体遇到自旋电子学:利用自旋霍尔效应探测量子自旋液体的理论
- 批准号:
2238135 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Continuing Grant
Interband Tunneling Mechanism of Nonlinear Anomalous Hall Effect in Two-Band Systems
双带系统非线性反常霍尔效应的带间隧道机制
- 批准号:
23K03297 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Anode optimization and performance evaluation of a 100 W-class Hall thruster with water propellant
100W级水推进剂霍尔推进器阳极优化及性能评估
- 批准号:
22KJ1149 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Measurements of the nucleon electromagnetic form factors at high momentum transfer in experimental hall A at Jefferson Lab
杰斐逊实验室 A 实验厅高动量传递下核子电磁形状因子的测量
- 批准号:
2887825 - 财政年份:2023
- 资助金额:
$ 12.99万 - 项目类别:
Studentship