Random Processes: Data Analysis and Theory
随机过程:数据分析和理论
基本信息
- 批准号:0504162
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Random process data analysis has become a major theme of contemporary science. Motivated by problems from wildlife biology and forestry, techniques for the statistical handling of spatial-temporal point process data and of curved trajectories in the plane are developed as well as statistical methods for random process data generally. In particular probabilists have discovered various theoretical results concerning vector-valued stochastic differential equations, but their statistical and data analytic properties have not been totally developed. Stochastic differential equations are employed to describe the observed trajectories of the animals in the reserve. The equations are unusual in having paths of explanatories included and sometimes time lags. The fact that an animal's motion is bounded by a high fence also affects the analysis. In the work approximations to the random model are needed. The large sample accuracy of the approximations will be studied. The tools of point processes, smoothing and time series analysis are being employed with the wildfire data. Predictors of future risk and possible loss as the fire season proceeds and for future years are being developed.Two specific problems addressed are of broad impact and of societal importance. The problems are risk estimation for wildfires and the investigation of the effects that humans moving through an animal reserve have on the behavior of the animals. A question in the latter case is with what level of human usage can wild animals and humans share a habitat. There are data available from designed experiments with humans walking, riding horses, bicycling and on all-terrain vehicles traveling in the reserve. Both problems are studied using data sets come from the Forest Service, U. S. Department of Agriculture. This work is of particularly broad impact for there are the possibility of reducing human threat from fire, and of maintaining natural resource values. Predictions of the risk as a function of time and space will allow efficient placement of fire fighting resources.The intellectual merit of the work includes that quite a variety of interesting analytic problems arise, motivated by these applications, and these problems will be addressed in the research. The data sets are large so it is anticipated that real progress will be made on understanding the applicability of the methods.
随机过程数据分析已成为当代科学的一个重要主题。受野生生物学和林业问题的启发,发展了时空点过程数据和平面曲线轨迹的统计处理技术,以及随机过程数据的统计方法。特别是关于向量值随机微分方程,概率学家已经发现了各种理论结果,但它们的统计和数据分析性质还没有完全发展。采用随机微分方程来描述动物在保护区的观察轨迹。方程是不寻常的,包括路径的天文台,有时时间滞后。事实上,动物的运动是由一个高围栏限制也影响分析。在工作中,需要对随机模型进行近似。将研究近似值的大样本精度。点处理,平滑和时间序列分析的工具正在与野火数据。随着火灾季节的进行和未来几年的未来风险和可能损失的预测器正在开发中,所处理的两个具体问题具有广泛的影响和社会重要性。这些问题是野火的风险估计和人类通过动物保护区对动物行为的影响的调查。在后一种情况下的一个问题是,在什么程度的人类利用下,野生动物和人类可以共享一个栖息地。有数据可从设计的实验与人类步行,骑马,骑自行车和全地形车在保护区旅行。这两个问题的研究使用的数据集来自林务局,美国。S.农业部。这项工作具有特别广泛的影响,因为有可能减少火灾对人类的威胁,并保持自然资源的价值。作为时间和空间的函数的风险预测将允许有效地安置消防resources.The智力价值的工作包括,相当多种有趣的分析问题出现,这些应用程序的动机,这些问题将在研究中得到解决。数据集很大,因此预计在了解这些方法的适用性方面将取得真实的进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Brillinger其他文献
David Brillinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Brillinger', 18)}}的其他基金
Modeling and analyzing phenomena, particularly interactions amongst moving particles
建模和分析现象,特别是运动粒子之间的相互作用
- 批准号:
1007553 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
Stochastic gradient systems: inference and applications
随机梯度系统:推理和应用
- 批准号:
0707157 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Point Processes and time Series: Mutual Information Analyses
点过程和时间序列:互信息分析
- 批准号:
0203921 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Continuing Grant
Point Processes and Time Series: Networks and Wavelets
点过程和时间序列:网络和小波
- 批准号:
9971309 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Statistical Modeling of Multidimensional Movements of Free Ranging Animals
自由放养动物多维运动的统计建模
- 批准号:
9704739 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing Grant
U.S.-Brazil Cooperative Research on Inferential Aspects of Some Wavelet Based Stochastic Models
美国-巴西关于某些基于小波的随机模型的推理方面的合作研究
- 批准号:
9600251 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Time Series and Point Processes: Networks and Wavelets
数学科学:时间序列和点过程:网络和小波
- 批准号:
9625774 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Statistical Inference for Some Dynamic and Spatial Phenomena
数学科学:一些动态和空间现象的统计推断
- 批准号:
9300002 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Statistical Inference for Some Dynamic and Spatial Phenomena
数学科学:一些动态和空间现象的统计推断
- 批准号:
9208683 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Statistical Inference for Some Dynamic Phenomena
数学科学:一些动态现象的统计推断
- 批准号:
8900613 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Submesoscale Processes Associated with Oceanic Eddies
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
相似海外基金
CC* INTEGRATION-SMALL: ADIABATIC MICROSERVICE LEVEL LOAD BALANCED FORWARDING ON PISA SWITCH FOR ACCELERATING URGENT PROCESSES IN SCIENCE DATA CENTER NETWORKS
CC* 集成小型:PISA 交换机上的绝热微服务级负载平衡转发,用于加速科学数据中心网络中的紧急进程
- 批准号:
2346729 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAS: Developing Data-Driven, Automated Methodology to Understand and Control Light-Driven Catalytic Processes
CAS:开发数据驱动的自动化方法来理解和控制光驱动的催化过程
- 批准号:
2350257 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Inference for Hawkes processes with challenging data
使用具有挑战性的数据进行 Hawkes 流程的推理
- 批准号:
DP240101480 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Data-driven and science-informed methods for the discovery of biomedical mechanisms and processes
用于发现生物医学机制和过程的数据驱动和科学信息方法
- 批准号:
10624014 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of statistical inference of extended Hawkes processes including missing data problem
扩展霍克斯过程的统计推断的发展,包括缺失数据问题
- 批准号:
23H03358 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Formation Processes of Heavy Elements in the Early Universe Elucidated by Superconducting Nanoelectronics, Large-Scale Numerical Simulations, and Data Science
通过超导纳米电子学、大规模数值模拟和数据科学阐明早期宇宙中重元素的形成过程
- 批准号:
23K20035 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fund for the Promotion of Joint International Research (International Leading Research )
Non-local contributions to b->smumu processes and constraints on sbcc operators from data
对 b->smumu 过程的非本地贡献以及数据对 sbcc 运算符的约束
- 批准号:
2876664 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Non-regular robust methods for locally stationary generalized unit root related processes and their applications to large-scale data
局部平稳广义单位根相关过程的非正则鲁棒方法及其在大规模数据中的应用
- 批准号:
23K11004 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Enhancing local government greener procurement processes through carbon data
通过碳数据加强地方政府的绿色采购流程
- 批准号:
10045799 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant for R&D
Data Driven Modeling and Control of Batch and Batch Like Processes
批处理和类批处理过程的数据驱动建模和控制
- 批准号:
573854-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards