Data-driven and science-informed methods for the discovery of biomedical mechanisms and processes

用于发现生物医学机制和过程的数据驱动和科学信息方法

基本信息

  • 批准号:
    10624014
  • 负责人:
  • 金额:
    $ 34.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-25 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

Abstract Text Data-driven discovery methods are a novel class of methodologies and computational approaches, revolutionizing the modeling, prediction, and control of complex systems, while remaining scientifically explainable and interpretable. These methods learn governing equations directly from data and have found considerable success in a wide range of applications including turbulence, climate, robotics, and autonomy. However, the first generation of these methods has proven poorly suited to the study of biomedical data. To realize the full potential of data-driven approaches, they must be extended and adapted to deal with the noise, sparsity, and variability intrinsic to experiments with living organisms. My group has extended the seminal Sparse Identification of Nonlinear Dynamics (SINDy) method to the Weak form SINDy (WSINDy). Weak form equations are a transform of the original data that enables learning of the equations even in the presence of substantial noise and sparsity. The approach effectively recasts scientific discovery from proposing and validating/refuting a single scientific hypothesis to simultaneously proposing (in many cases) more than 10^180 hypotheses and using sparse regressing to prune the hypotheses which are not supported by the data. Moreover, our approach currently takes on the order of minutes on a standard laptop. The overarching goals of this research are to use the WSINDy method to investigate the 1) individual cell-based drivers for collective cell migration and 2) data-driven inference for unobserved processes in infectious disease dynamics as well as 3) extend WSINDy to infer stochastic dynamical systems and discover critical, but hidden, compartments. The first goal continues a long collaboration with Xuedong Liu (CU-Boulder). We have adapted WSINDy to create individualized models of each cell in a migrating colony. We learn the interaction rules and can classify them according to cell type. The plan is to continue expanding the capabilities of WSINDy in this context to hopefully learn the biochemical dynamics unique to each cell. This would be the first coupling of data-driven models for inter- and intra-cell processes. It will lead us closer to understanding how cells make decisions that lead to the emergent collective motion in wound healing. The second goal expands a collaboration with Beth Carlton (an epidemiologist) in infectious disease dynamics centered around the COVID-19 modeling team (of which we are both members). During our efforts to develop a compartmental model for advising the State Epidemiologist and the Governor, several questions arose that could be efficiently answered by extensions to WSINDy. In particular, we will develop data-driven inference for infection and recovery rates as well as the distribution of dwell times in the infection timeline. The last goal involves extensions of WSINDy to learn models for situations that frequently arise in biomedical phenomenon. First, we plan to learn stochastic dynamical systems. Previous efforts were only able to infer either drift term or mean field equations. By recasting WSINDy to evaluate moments of the data, we can learn the stochastic models directly. Lastly, inference regarding unobserved compartments is challenging, but via an extension to WSINDy we plan to discover unobserved variables and their equations.
抽象的文字

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Bortz其他文献

David Bortz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Bortz', 18)}}的其他基金

Epithelial Cell Migration: Model selectionn for mechanistic model development
上皮细胞迁移:机械模型开发的模型选择
  • 批准号:
    9460745
  • 财政年份:
    2017
  • 资助金额:
    $ 34.9万
  • 项目类别:
Epithelial Cell Migration: Model selection for mechanistic model development
上皮细胞迁移:机械模型开发的模型选择
  • 批准号:
    10389279
  • 财政年份:
    2017
  • 资助金额:
    $ 34.9万
  • 项目类别:

相似海外基金

Developing an NHP model for understanding the biological causes of long COVID-19 pathogenesis
开发 NHP 模型以了解 COVID-19 长期发病机制的生物学原因
  • 批准号:
    10404760
  • 财政年份:
    2021
  • 资助金额:
    $ 34.9万
  • 项目类别:
Increased risk of STI and HIV among adolescent girls and young women due to COVID-19 and pandemic mitigation: Biological, behavioral, and psychosocial mediators
由于 COVID-19 和流行病缓解措施,青春期女孩和年轻女性感染性传播感染和艾滋病毒的风险增加:生物、行为和社会心理调节因素
  • 批准号:
    10582165
  • 财政年份:
    2021
  • 资助金额:
    $ 34.9万
  • 项目类别:
A Multi-Dimensional Linked Registry to Identify Biological, Clinical, Health System, and Socioeconomic Risk Factors for COVID-19-Related Cardiovascular Events
多维关联登记系统,用于识别与 COVID-19 相关的心血管事件的生物、临床、卫生系统和社会经济风险因素
  • 批准号:
    10376347
  • 财政年份:
    2021
  • 资助金额:
    $ 34.9万
  • 项目类别:
A Multi-Dimensional Linked Registry to Identify Biological, Clinical, Health System, and Socioeconomic Risk Factors for COVID-19-Related Cardiovascular Events
多维关联登记系统,用于识别与 COVID-19 相关的心血管事件的生物、临床、卫生系统和社会经济风险因素
  • 批准号:
    10183512
  • 财政年份:
    2021
  • 资助金额:
    $ 34.9万
  • 项目类别:
TB and COVID-19 coinfection: Investigating the clinical and biological interactions between Mycobacterium tuberculosis and SARS-CoV-2
结核病和 COVID-19 双重感染:研究结核分枝杆菌和 SARS-CoV-2 之间的临床和生物学相互作用
  • 批准号:
    MR/W015374/1
  • 财政年份:
    2021
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Research Grant
Increased risk of STI and HIV among adolescent girls and young women due to COVID-19 and pandemic mitigation: Biological, behavioral, and psychosocial mediators
由于 COVID-19 和流行病缓解措施,青春期女孩和年轻女性感染性传播感染和艾滋病毒的风险增加:生物、行为和社会心理调节因素
  • 批准号:
    10617366
  • 财政年份:
    2021
  • 资助金额:
    $ 34.9万
  • 项目类别:
A Multi-Dimensional Linked Registry to Identify Biological, Clinical, Health System, and Socioeconomic Risk Factors for COVID-19-Related Cardiovascular Events
多维关联登记系统,用于识别与 COVID-19 相关的心血管事件的生物、临床、卫生系统和社会经济风险因素
  • 批准号:
    10599322
  • 财政年份:
    2021
  • 资助金额:
    $ 34.9万
  • 项目类别:
Increased risk of STI and HIV among adolescent girls and young women due to COVID-19 and pandemic mitigation: Biological, behavioral, and psychosocial mediators
由于 COVID-19 和流行病缓解措施,青春期女孩和年轻女性感染性传播感染和艾滋病毒的风险增加:生物、行为和社会心理调节因素
  • 批准号:
    10325418
  • 财政年份:
    2021
  • 资助金额:
    $ 34.9万
  • 项目类别:
Sex as a Biological Variable Supplement - Molecular and cellular therapies against COVID-19 using angiotensin-converting enzyme 2 (ACE2)
性别作为生物变量补充剂 - 使用血管紧张素转换酶 2 (ACE2) 针对 COVID-19 的分子和细胞疗法
  • 批准号:
    424669
  • 财政年份:
    2020
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Operating Grants
Sex as a Biological Variable Supplement - Identification of biomarkers that predict severity of COVID-19 patients
性别作为生物变量补充 - 识别预测 COVID-19 患者严重程度的生物标志物
  • 批准号:
    424680
  • 财政年份:
    2020
  • 资助金额:
    $ 34.9万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了