Skein Theory, Khovanov Homology, and Quantum Doubles of Subfactors
绞纱理论、霍瓦诺夫同调和子因子的量子双打
基本信息
- 批准号:0504199
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-06-01 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAsaedaThe Jones polynomial arose from the study of subfactors. A key element in the study of the Jones polynomial is its description in terms of skein relations and state sums. Other subfactors give rise to other quantum invariants of knots and links. The PI and U. Haagerup discovered subfactors that are not associated to any other known objects like quantum groups. She will continue her study of quantum invariants associated to those subfactors as well as the type {cal D} and {cal E} subfactors (via the quantum double construction) by exposing the skein relations and state sums underlying them. In another direction, Khovanov homology theories are homology theories of knots and links in S^3 whose Euler characteristic yields quantum invariants associated to the quantum groups U_q(sl_n). The PI proposes to continue her study of these by extending their definition to quantum invariants coming from subfactors, and to knots and links lying in manifolds besides S^3. The PI also continue her work on quantum double ofsubfactors and a generalization to quantum multiples. Subfactor theory is among operator algebra theory one of the most influential subjects in the sense that it has relations and applications to topology, representation theory, and quantum physics. However its merit has not been understood, particularly in topology. The proposed research will make the results in subfactor theory accessible to topologists, and thus give a new bridge between subfactor theory and topology, and increase collaboration between them. So far subfactor theory has not been very accessible for undergraduate students, not even for most graduate students due to the amount of prerequisite in analysis. The proposed research will reveal combinatorial structures of subfactors, that may be easily handled without strong background in analysis. It will provide suitable topics for undergraduate research and thus activate interaction among students of various level and faculty, including women and minorities.
【摘要】琼斯多项式是从子因子的研究中产生的。研究琼斯多项式的一个关键因素是用绞丝关系和状态和来描述它。其他子因子产生结和链的其他量子不变量。PI和U.哈格鲁普发现了与量子群等其他已知物体无关的子因子。她将继续研究与这些子因子相关的量子不变量以及类型{cal D}和{cal E}子因子(通过量子双重构造),通过揭示串结关系和它们背后的状态和。在另一个方向上,Khovanov同调理论是S^3中结点和链接的同调理论,其欧拉特性产生与量子群U_q(sl_n)相关的量子不变量。PI建议继续她的研究,将它们的定义扩展到来自子因子的量子不变量,以及S^3以外流形中的结和链接。PI还继续她在子因子的量子倍和量子倍的推广方面的工作。子因子理论是算子代数理论中最具影响力的学科之一,因为它与拓扑学、表示理论和量子物理都有联系和应用。然而,它的优点尚未被理解,特别是在拓扑学方面。本研究将使子因子理论的研究成果能够为拓扑学家所接受,从而在子因子理论和拓扑学之间架起一座新的桥梁,增加它们之间的协作。到目前为止,子因子理论对本科生来说还不是很容易理解,甚至对大多数研究生来说也是如此,因为分析的先决条件太多了。该研究将揭示子因子的组合结构,这可能很容易处理,没有强大的分析背景。它将为本科研究提供合适的主题,从而激活不同层次的学生和教师之间的互动,包括女性和少数民族。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marta Asaeda其他文献
Marta Asaeda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marta Asaeda', 18)}}的其他基金
Skein Theory, Khovanov Homology, and Quantum Doubles of Subfactors
绞纱理论、霍瓦诺夫同调和子因子的量子双打
- 批准号:
0636216 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
- 批准号:
DP240101511 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




