Calculus of the embedding functor
嵌入函子的微积分
基本信息
- 批准号:0504390
- 负责人:
- 金额:$ 6.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-15 至 2007-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Abstract for Ismar VolicThe main goal of this project is the study of classical knots and more general spaces of embeddings through a relatively new theory of calculus of the embedding functor, developed by T. Goodwillie and M. Weiss. Recent results of Volic show that there is a strong connection between the two. In fact, a certain tower of spaces arising from calculus of functors serves as a classifying object for finite type knot invariants, a fascinating class of invariants which has been found to connect in intricate ways to other areas of topology and geometry, as well as physics. Other goals of the project concern more general spaces of knots and in particular the collapse of certain spectral sequences associated to these spaces. This should give new information about homology and homotopy of spaces of knots, as well as new insight into appearance of interesting combinatorics in their study. A recent result due to P. Lambrechts and Volic concerning configuration spaces will serve as the starting point for this part of the project. Since the construction of the calculus tower modeling the space of knots is quite general, another goal is to extract information about other spaces of embeddings. In particular, G. Arone and Volic plan to use the interplay of two versions of calculus of the embedding functor, manifold and orthogonal, to show that the spectral sequences arising from these theories collapse. This should also result in new insight into how these two versions of calculus interact.Knots are some of the most interesting objects of study in topology both because they are easy to define and visualize and because they are of interest to physicists, chemists, etc. Some fundamental questions about knots, such as their classification, or construction of efficient ways of telling them apart (i.e. finding good knot invariants), still generate a wealth of exciting research. One of the main objectives of this project is to further the understanding of knot theory by studying it through the new technique of calculus of functors. It turns out, however, that the methods used are quite general and extend beyond knots to larger classes of topological spaces. Thus the new connections between topology, geometry, combinatorics, and physics which are expected to arise from this project could have broad implications as well as bring together various schools of thought in topology in unexpected ways.
这个项目的主要目标是通过一个相对较新的嵌入函子微积分理论来研究经典的节点和更一般的嵌入空间,这个理论是由T。Goodwillie和M.韦斯。 Volic最近的研究结果表明,两者之间存在着很强的联系。 事实上,从函子演算中产生的某个空间塔可以作为有限型结不变量的分类对象,这是一类迷人的不变量,它以复杂的方式与拓扑学和几何学以及物理学的其他领域联系在一起。 该项目的其他目标涉及更一般的空间节点,特别是崩溃的某些频谱序列与这些空间。 这应该给新的信息同源性和同伦空间的结,以及新的见解出现有趣的组合在他们的研究。最近由P.Lambrechts和Volic关于位形空间的一个结果将作为本项目这一部分的起点。 由于构造模拟节点空间的微积分塔是相当通用的,另一个目标是提取关于其他嵌入空间的信息。 特别是G. Arone和Volic计划使用嵌入函子的两个版本的微积分的相互作用,流形和正交,以表明这些理论产生的谱序列崩溃。 这也将导致对这两种版本的微积分如何相互作用的新的认识。结是拓扑学中最有趣的研究对象之一,因为它们很容易定义和可视化,也因为它们对物理学家,化学家等感兴趣。关于结的一些基本问题,如它们的分类,或区分它们的有效方法的构建(即找到好的结不变量),仍然产生了丰富的令人兴奋的研究。 这个项目的主要目标之一是通过函子演算的新技术来研究纽结理论,以进一步理解纽结理论。 然而,事实证明,所使用的方法是相当普遍的,并扩展到更大的拓扑空间类以外的结。 因此,拓扑学,几何学,组合学和物理学之间的新联系,预计将从这个项目中产生广泛的影响,并以意想不到的方式将拓扑学中的各种思想汇集在一起。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ismar Volic其他文献
Coformality and rational homotopy groups of spaces of long knots
长结空间的共形性和有理同伦群
- DOI:
10.4310/mrl.2008.v15.n1.a1 - 发表时间:
2007 - 期刊:
- 影响因子:1
- 作者:
G. Arone;P. Lambrechts;V. Tourtchine;Ismar Volic - 通讯作者:
Ismar Volic
Detecting Functional States of the Rat Brain with Topological Data Analysis
通过拓扑数据分析检测大鼠大脑的功能状态
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Nianqiao Ju;Ismar Volic;M. Wiest - 通讯作者:
M. Wiest
The rational homology of spaces of long knots in codimension > 2
余维 > 2 长结空间的有理同调
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
P. Lambrechts;V. Tourtchine;Ismar Volic - 通讯作者:
Ismar Volic
Diagrams for primitive cycles in spaces of pure braids and string links
纯辫子和弦链空间中的原始循环图
- DOI:
10.5802/aif.3616 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
R. Komendarczyk;R. Koytcheff;Ismar Volic - 通讯作者:
Ismar Volic
Formality of the Little N-Disks Operad
小 N 盘操作的形式
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
P. Lambrechts;Ismar Volic - 通讯作者:
Ismar Volic
Ismar Volic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ismar Volic', 18)}}的其他基金
RUI: Algebraic topology of knot and link spaces
RUI:结和链接空间的代数拓扑
- 批准号:
1205786 - 财政年份:2012
- 资助金额:
$ 6.21万 - 项目类别:
Standard Grant
RUI: Embedding spaces via calculus of functors and generalizations of finite type invariants
RUI:通过函子演算和有限类型不变量的推广来嵌入空间
- 批准号:
0805406 - 财政年份:2008
- 资助金额:
$ 6.21万 - 项目类别:
Standard Grant
相似海外基金
Job share: Embedding environmental and geospatial science in nature recovery and rewilding
工作分享:将环境和地理空间科学融入自然恢复和野化中
- 批准号:
NE/Y005163/1 - 财政年份:2024
- 资助金额:
$ 6.21万 - 项目类别:
Research Grant
Spectral embedding methods and subsequent inference tasks on dynamic multiplex graphs
动态多路复用图上的谱嵌入方法和后续推理任务
- 批准号:
EP/Y002113/1 - 财政年份:2024
- 资助金额:
$ 6.21万 - 项目类别:
Research Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345437 - 财政年份:2024
- 资助金额:
$ 6.21万 - 项目类别:
Standard Grant
CRII: SHF: Embedding techniques for mechanized reasoning about existing programs
CRII:SHF:现有程序机械化推理的嵌入技术
- 批准号:
2348490 - 财政年份:2024
- 资助金额:
$ 6.21万 - 项目类别:
Standard Grant
Job Share: Embedding environmental and geospatial science in nature recovery and rewilding
工作分享:将环境和地理空间科学融入自然恢复和野化中
- 批准号:
NE/Y005155/1 - 财政年份:2024
- 资助金额:
$ 6.21万 - 项目类别:
Research Grant
Collaborative Research: Embedding Material-Informed History through Fractional Calculus State Variable Formulation
合作研究:通过分数阶微积分状态变量公式嵌入材料丰富的历史
- 批准号:
2345438 - 财政年份:2024
- 资助金额:
$ 6.21万 - 项目类别:
Standard Grant
Creative Health Boards: A New Model for Embedding Creative Health and Community Assets in Health Systems across the UK
创意健康委员会:将创意健康和社区资产融入英国卫生系统的新模式
- 批准号:
AH/Z505377/1 - 财政年份:2024
- 资助金额:
$ 6.21万 - 项目类别:
Research Grant
SBIR Phase I: Methods for Embedding User Data into 3D Generative AI Computer-aided-Design Models
SBIR 第一阶段:将用户数据嵌入 3D 生成式 AI 计算机辅助设计模型的方法
- 批准号:
2335491 - 财政年份:2024
- 资助金额:
$ 6.21万 - 项目类别:
Standard Grant
DEFRA Embedding Economics into the Fourth UK Climate Change Risk Assessment
DEFRA 将经济学纳入第四次英国气候变化风险评估
- 批准号:
ES/Y005236/1 - 财政年份:2024
- 资助金额:
$ 6.21万 - 项目类别:
Fellowship
Towards Embedding Responsible AI in the School System: Co-Creation with Young People
将负责任的人工智能嵌入学校系统:与年轻人共同创造
- 批准号:
AH/Z505560/1 - 财政年份:2024
- 资助金额:
$ 6.21万 - 项目类别:
Research Grant