Mathematical Methods for Small--Sample Biostatistical Inference
小样本生物统计推断的数学方法
基本信息
- 批准号:0505499
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigator applies various mathematical methodsto extend the range of application of saddlepointapproximation techniques and exact enumeration techniquesin statistical inference. These techniques are applied tomulti-dimensional conditional inference, achieved primarilyby developing new approximations to multivariate tailprobabilities for some component of a vector of sufficientstatistics conditional on the remaining components, andmethods for calculating these tail probabilities exactly.Particular attention is paid to probability modelswhose sufficient statistics have lattice distributions,since standard asymptotic techniques frequently failin this context. These models, including logistic andPoisson regression and contingency table models, arevery frequently used in applied biostatistical work.Specifically, this research includes the applicationof multidimensional saddlepoint approximations toorder--restricted hypotheses. It extends existingApproximations applicable to continuous distributions togeneral non-lattice distributions. It develops guidelinesfor tuning approximate conditional inferential methods toobtain higher power. Computational algorithms developedas part of this work are publicly available.Many current statistical techniques rely on mathematical approximations;the accuracy of these approximations ranges from very good to inadequate.This research involves approximations known to be almost always of highaccuracy, and applies them in some statistical contexts that are widelyused by scientists in a variety of disciplines. This research allowsinvestigators to draw valid conclusions from smaller data sets,particularly in cases when important research questions are phrased in termsof a number of quantities that must be accounted for. This situation occurs in a wide range of areas, from finance to political science to medicine.For example, a new medical therapy might be expected to lead to improvements,potentially measured in a number of ways. The investigator wishes todemonstrate that individuals receiving the new therapy at least as well according to all of the potential measures, and better on at least onemeasure, than do patients on the original therapy. Standard statisticalmethods do not handle such situations in an efficient way; the currentresearch represents a significant improvement.
为了扩大鞍点逼近技术和精确计数技术在统计推断中的应用范围,作者运用了各种数学方法。这些技术被应用于多维条件推理,主要是通过对充分统计向量的某些分量的以剩余分量为条件的多变量尾部概率开发新的近似来实现的,以及精确计算这些尾部概率的方法。特别关注其充分统计具有晶格分布的概率模型,因为标准的渐近技术在这方面经常失败。这些模型,包括Logistic模型、Poisson回归模型和列联表模型,在应用生物统计学工作中是非常常用的。具体地说,本研究包括多维鞍点近似在序限制假设中的应用。它将现有的适用于连续分布的近似推广到一般的非点阵分布。它为调整近似条件推理方法以获得更高的能力制定了指导方针。作为这项工作的一部分开发的计算算法是公开可用的。许多当前的统计技术依赖于数学近似;这些近似的精度从很好到不足。这项研究涉及已知的几乎总是高精度的近似,并将它们应用于科学家在不同学科中广泛使用的一些统计背景。这项研究允许研究人员从较小的数据集中得出有效的结论,特别是在重要的研究问题以一定数量的形式表述的情况下。这种情况发生在广泛的领域,从金融到政治学再到医学。例如,一种新的医学疗法可能会带来改善,可能会以多种方式衡量。研究人员希望证明,根据所有可能的措施,接受新疗法的患者至少与接受新疗法的患者一样好,至少在一项措施上比接受原始疗法的患者更好。标准的统计方法不能有效地处理这种情况;目前的研究代表着一项重大改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Kolassa其他文献
John Kolassa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Kolassa', 18)}}的其他基金
Collaborative Research: Higher-Order Asymptotics and Accurate Inference for Post-Selection
合作研究:高阶渐进和后选择的精确推理
- 批准号:
1712839 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Methods for Approximately Exact Statistical Inference
近似精确统计推断的数学方法
- 批准号:
0906569 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Methods for Small Sample Biostatistical Inference
小样本生物统计推断的数学方法
- 批准号:
0092659 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SHF: Small: Methods and Architectures for Optimization and Hardware Acceleration of Spiking Neural Networks
SHF:小型:尖峰神经网络优化和硬件加速的方法和架构
- 批准号:
2310170 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
III: Small: Computational Methods for Multi-dimensional Data Integration to Improve Phenotype Prediction
III:小:多维数据集成的计算方法以改进表型预测
- 批准号:
2246796 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CPS: SMALL: Formal Methods for Safe, Efficient, and Transferable Learning-enabled Autonomy
CPS:SMALL:安全、高效和可迁移的学习自主的正式方法
- 批准号:
2231257 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
SaTC: CORE: Small: Probing Fairness of Ocular Biometrics Methods Across Demographic Variations
SaTC:核心:小:探索不同人口统计差异的眼部生物识别方法的公平性
- 批准号:
2345561 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
AF: Small: Low-Degree Methods for Optimization in Random Structures. Power and Limitations
AF:小:随机结构优化的低度方法。
- 批准号:
2233897 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
SHF: Small: Efficient, Deterministic and Formally Certified Methods for Solving Low-dimensional Linear Programs with Floating-point Precision
SHF:小型:用于以浮点精度求解低维线性程序的高效、确定性且经过正式认证的方法
- 批准号:
2312220 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
SERVICES FOR THE CHARACTERIZATION OF ABSORPTION, DISTRIBUTION, METABOLISM, EXCRETION, AND TOXICITY (ADMET) PROPERTIES OF SMALL-MOLECULE DRUG CANDIDATES USING STANDARDIZED IN VITRO METHODS IN SUPPORT O
使用标准化体外方法表征小分子候选药物的吸收、分布、代谢、排泄和毒性 (ADMET) 特性的服务
- 批准号:
10936131 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Computational methods to identify small molecule RNA binding sites
识别小分子 RNA 结合位点的计算方法
- 批准号:
573688-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Algorithms and Methods for small RNA studies
小 RNA 研究的算法和方法
- 批准号:
RGPIN-2017-06286 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
SHF: Small: Methods, Workflows, and Data Commons for Reducing Training Costs in Neural Architecture Search on High-Performance Computing Platforms
SHF:小型:降低高性能计算平台上神经架构搜索训练成本的方法、工作流程和数据共享
- 批准号:
2223704 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




