FRG: Mechanically- and Biologically-Active Nickel-Titanium Foamas Biomimetic Material for Skeletal Repair
FRG:用于骨骼修复的机械和生物活性镍钛泡沫仿生材料
基本信息
- 批准号:0505772
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the great challenges in bioengineering is the effective repair of the human skeletal system. At the same time, bone is a very rich substrate to learn about structure-property relations in materials. Despite decades of research and the importance for human health and quality of life, ideal systems for skeletal repair have not yet been achieved. The ability to synthesize novel biomimetic micro- and nanostructured materials will enable the development of materials designed to trigger bone repair and perhaps to achieve the remarkable properties of bone in artificial systems. Porous metal coatings that allow bone ingrowth for device fixation have been developed, however success is limited by debonding of the coatings, as well as by the biological unpredictability of bone growth. This project explores the alternative approach of using fully porous metallic foam for the implant device, which both provides a porous structure ideal for bony ingrowth and lowers implant stiffness, thereby reducing stress-shielding problems seen with solid metallic implants. This approach combines with the modification of internal surfaces in titanium or titanium alloy foams with self-assembling polymers designed to be bioactive and this way recruit the appropriate cells to grow bone within the pore volume. The supramolecular polymers are also used in this project to encapsulate bone cells during their self-assembly in the interior of metallic foams. Analytical modeling of the porous Ti is used in the project to provide good estimates of the elastic moduli, and using finite element analyses stresses are predicted as bone fills the pores. This Focused Research Group project is being co-funded by the Polymers and Metals Programs in the Division of Materials Research and the Mechanics and Structures of Materials Program in the Division of Civil and Mechanical Systems. This interdisciplinary project aims to develop superelastic nickel-titanium metallic foams with moduli comparable to bone, which contain bioactive materials on their internal surfaces that invite rapid bone growth. These superelastic alloys may be useful for stimulating bone cells mechanically given their extensive recoverable deformation and will enable a novel insertion technique. The proposed work integrates the capabilities of three groups in metallurgical synthesis (Dunand), self-assembly (Stupp), and biomechanics (Brinson) to develop a mechanically- and biologically-active osteomimetic material with novel functions for optimized skeletal repair. Overlapping research and collaborative interactions will be pursued using the successful framework that was developed in a previous program on Ti foams. Porous NiTi samples created in the Dunand laboratory will be transformed into bioactive materials by self-assembly of supramolecular polymer coatings from the Stupp laboratory. These bioactive materials will be investigated for biological activity via bone ingrowth studies (Stupp) and linked to mechanical properties via cyclic in situ loading (Brinson). Feedback on the bioactivity (Stupp) as a function of loading, pore morphology and local properties from modeling (Brinson) will in turn suggest improvements in foam processing (Dunand).As a research area, skeletal repair has broad impact because it is not only critically important to human health, human productivity, and quality of life, but it is at the same time highly interdisciplinary, and can therefore have great impact on graduate and undergraduate education. The approach to the subject in this proposed program offers a great opportunity for interdisciplinary training of students, integrating advanced metallurgy, organic chemistry, cell biology and mechanics to investigate a complex problem. The project's interdisciplinary nature is also a good platform to generate new ideas on biomimetic design of microstructure and nanostructure in materials using a mechanically adaptable, self-healing material as the model.
生物工程的最大挑战之一是人类骨骼系统的有效修复。 同时,骨是了解材料结构-性能关系的非常丰富的基质。 尽管数十年的研究和对人类健康和生活质量的重要性,骨骼修复的理想系统尚未实现。 合成新型仿生微米和纳米结构材料的能力将使设计用于触发骨修复的材料的开发成为可能,并且可能在人工系统中实现骨的显着特性。 已经开发出允许骨长入用于器械固定的多孔金属涂层,但是成功受到涂层脱粘以及骨生长生物学不可预测性的限制。该项目探索了将全多孔金属泡沫用于植入器械的替代方法,该方法既提供了理想的骨长入多孔结构,又降低了植入物刚度,从而减少了固体金属植入物的应力遮挡问题。这种方法结合了钛或钛合金泡沫的内表面改性,自组装聚合物被设计为具有生物活性,并以这种方式招募适当的细胞在孔隙体积内生长骨。 超分子聚合物也被用于这个项目中,以封装骨细胞在其自组装在金属泡沫的内部。 在项目中使用多孔钛的分析建模,以提供弹性模量的良好估计,并使用有限元分析预测骨填充孔隙时的应力。该重点研究小组项目由材料研究部的聚合物和金属项目以及土木和机械系统部的材料力学和结构项目共同资助。 这个跨学科的项目旨在开发具有与骨骼相当模量的超弹性镍钛金属泡沫,其内表面含有生物活性材料,可促进骨骼快速生长。 这些超弹性合金可用于机械刺激骨细胞,因为它们具有广泛的可恢复变形,并将实现新的插入技术。拟议的工作整合了冶金合成(Dunand),自组装(Stupp)和生物力学(Brinson)三个小组的能力,以开发具有优化骨骼修复新功能的机械和生物活性的拟骨材料。重叠的研究和合作互动将采用成功的框架,在钛泡沫以前的计划开发。在Dunand实验室中创建的多孔NiTi样品将通过Stupp实验室的超分子聚合物涂层的自组装转化为生物活性材料。将通过骨长入研究(Stupp)对这些生物活性材料的生物活性进行研究,并通过循环原位加载(Brinson)将其与机械性能联系起来。生物活性的反馈(Stupp)作为负载的函数,来自建模的孔形态和局部性质(Brinson)将反过来建议泡沫加工的改进(Dunand)。作为一个研究领域,骨骼修复具有广泛的影响,因为它不仅对人类健康,人类生产力和生活质量至关重要,而且同时具有高度的跨学科性,因此对研究生和本科生教育有很大的影响。 该计划中的主题方法为学生的跨学科培训提供了一个很好的机会,将先进的冶金学,有机化学,细胞生物学和力学结合起来,研究一个复杂的问题。 该项目的跨学科性质也是一个很好的平台,可以使用机械适应性,自我修复材料作为模型,在材料的微观结构和纳米结构的仿生设计方面产生新的想法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Stupp其他文献
MP45-07 SONIC HEDGEHOG PROMOTES CAVERNOUS NERVE REGENERATION BY INDUCING SPROUTING OF NEURONS IN THE PELVIC GANGLIA AND CAVERNOUS NERVE
- DOI:
10.1016/j.juro.2017.02.1425 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Ryan Dobbs;Shawn Choe;Gail Prins;Daniel Harrington;Samuel Stupp;Kevin McVary;Carol Podlasek - 通讯作者:
Carol Podlasek
755 PEPTIDE AMPHIPHILE NANOFIBER DELIVERY OF SONIC HEDGEHOG PROTEIN TO REDUCE SMOOTH MUSCLE APOPTOSIS IN THE PENIS AFTER CAVERNOUS NERVE RESECTION
- DOI:
10.1016/j.juro.2011.02.1780 - 发表时间:
2011-04-01 - 期刊:
- 影响因子:
- 作者:
Christopher Bond;Nicholas Angeloni;Daniel Harrington;Samuel Stupp;Kevin McKenna;Carol Podlasek - 通讯作者:
Carol Podlasek
MP52-12 MECHANISM OF CAVERNOUS NERVE REGENERATION BY SONIC HEDGEHOG
- DOI:
10.1016/j.juro.2015.02.1729 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:
- 作者:
Christopher Bond;Daniel Harrington;Samuel Stupp;Carol Podlasek - 通讯作者:
Carol Podlasek
1001 SONIC HEDGEHOG REGULATION OF BDNF IN THE CAVERNOUS NERVE
- DOI:
10.1016/j.juro.2012.02.1103 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:0
- 作者:
Christopher Bond;Nicholas Angeloni;Daniel Harrington;Samuel Stupp;Carol Podlasek - 通讯作者:
Carol Podlasek
P104 - A systemically-injected targeted nitric oxide-delivery vehicle durably inhibits neointimal hyperplasia after arterial injury
- DOI:
10.1016/j.niox.2014.09.052 - 发表时间:
2014-11-15 - 期刊:
- 影响因子:
- 作者:
Edward Bahnson;Tyson Moyer;Hussein Kassam;Janet Vercammen;Samuel Stupp;Melina Kibbe - 通讯作者:
Melina Kibbe
Samuel Stupp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Stupp', 18)}}的其他基金
Spatial Organization of Ions in Supramolecular Nanostructures
超分子纳米结构中离子的空间组织
- 批准号:
2102662 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Shape and Dimensional Precision in Polymeric Nanostructures
聚合物纳米结构的形状和尺寸精度
- 批准号:
1508731 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Continuing Grant
Shape and Dimensional Precision in Polymeric Nanostructures
聚合物纳米结构的形状和尺寸精度
- 批准号:
1006713 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
Shape and Dimensional Precision in Polymeric Nanostructures
聚合物纳米结构的形状和尺寸精度
- 批准号:
0605427 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
US/Japan BioNanotechnology Exchange Workshop; Japan
美国/日本生物纳米技术交流研讨会;
- 批准号:
0519379 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
FRG: Organoapatite-Coated Titanium Foam: A Biohybrid for Skeletal Repair
FRG:有机磷灰石涂层钛泡沫:用于骨骼修复的生物混合物
- 批准号:
0108342 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
Supramolecular and Covalent Polymer Nanostructures
超分子和共价聚合物纳米结构
- 批准号:
9972048 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Supramolecular and Covalent Polymer Nanostructures
超分子和共价聚合物纳米结构
- 批准号:
9996253 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Workshop on Interdisciplinary Macromolecular Science and Engineering
跨学科高分子科学与工程研讨会
- 批准号:
9714024 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
I-Corps: Translation Potential of Mechanically Compliant Fracture Fixation Plates for Long Bone Fractures
I-Corps:用于长骨骨折的机械顺应性骨折固定板的平移潜力
- 批准号:
2410029 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Informed Testing — From Full-Field Characterization of Mechanically Graded Soft Materials to Student Equity in the Classroom
职业:知情测试 – 从机械分级软材料的全场表征到课堂上的学生公平
- 批准号:
2338371 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
A methodology to connect functionalized gonadal constructs to a chick embryo through mechanically induced blood vessels from an egg
一种通过鸡蛋机械诱导血管将功能化性腺结构连接到鸡胚胎的方法
- 批准号:
24K15741 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Flame-Retarding and Mechanically Resilient Elastomer Composites
阻燃和机械弹性弹性体复合材料
- 批准号:
LP230100229 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Projects
STTR Phase I: Mechanically Controlled Drug Delivery Platform for Joint Environments
STTR 第一阶段:用于关节环境的机械控制药物输送平台
- 批准号:
2304235 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Awareness with Paralysis and Post-Traumatic Stress Disorder among Mechanically Ventilated Emergency Department Survivors: The ED-AWARENESS-2 Study
机械通气急诊科幸存者对瘫痪和创伤后应激障碍的认识:ED-AWARENESS-2 研究
- 批准号:
10583909 - 财政年份:2023
- 资助金额:
-- - 项目类别:
In-situ S/TEM investigation on nature and consequence of mechanically induced martensite in metallic materials
金属材料中机械诱导马氏体的性质和后果的原位 S/TEM 研究
- 批准号:
23K13222 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Noninvasive Diagnostic Markers of Lower Respiratory Tract Infection in Mechanically Ventilated Patients
机械通气患者下呼吸道感染的无创诊断标志物
- 批准号:
10697471 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Tissue-level Determinants of Mechanically-induced Arrythmias
机械诱发心律失常的组织水平决定因素
- 批准号:
495557 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Miscellaneous Programs
Biomineral-inspired mechanically tough perovskite solar cells with enhanced stability
受生物矿物启发,机械坚韧的钙钛矿太阳能电池具有增强的稳定性
- 批准号:
EP/X012263/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




