Shape and Dimensional Precision in Polymeric Nanostructures
聚合物纳米结构的形状和尺寸精度
基本信息
- 批准号:1006713
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY: Precise dimension and shape control remains a great challenge in the design of covalent and supramolecular polymers. The proposed work focuses on controlling the size and shape of supramolecular polymers by carefully designing their monomeric subunits. The intellectual merit of the proposal is its goal to develop self-assembly modes that integrate mechanical and bonding forces, aggregation kinetics, and templating strategies to define the size and shape of supramolecular polymers in ways that emulate biological structures. These synthetic structures inspired by nature could enable a high level of structural control that is essential for novel functions. This program studies three different codes to precisely control supramolecular size and shape. In the one approach, buckled (non-spherical) vesicles are created using oppositely charged amphiphilic molecules. These fluid membranes will be used to template a thin metal layer or a semiconducting mineral into non-spherical three-dimensional structures. The second approach uses coiled-coil peptides that assemble into mushroom-shaped, polar aggregates. A charged polymer of precise length (e.g., DNA) will then template the formation of higher order assemblies with precise dimensional control. In a third approach, small molecules are used to assemble one-dimensional structures, in which morphology is controlled by the molecular structure and the growth kinetics. The principles learned from preliminary studies will be applied to form more complex architectures and supramolecular block copolymers. All three projects require chemical synthesis, electron microscopy and diffraction techniques, as well as coarse-grained modeling.NON-TECHNICAL SUMMARY: Learning from the complex structures seen in nature has been one of the major goals of modern materials research. The motivation is to design new, sophisticated materials such as artificial molecular motors for electronics, energy, or sensing devices and also biomedical materials to repair tissues and organs. The work cuts across physical sciences, life sciences, and engineering disciplines, and it is therefore an excellent platform for education of future scientists and for international collaborations. As a step toward the goal of complex functional materials, the proposed research involves precisely controlling the shape and size of several self-assembling systems. One approach involves the use of DNA molecules of precise length as external templates to dictate the dimension of components in synthetic materials. The other approach programs molecules to form nanostructures with non-spherical shapes similar to many viruses. The proposed work will have broad impact on the interdisciplinary education of graduate students in materials research, since each of the proposed projects operates at the interface of synthetic chemistry, physics, and materials science. Several students from underrepresented groups are receiving this training in the PI's laboratory and the proposed program could greatly extend this effort.
技术概述:精确的尺寸和形状控制仍然是共价和超分子聚合物设计中的一个巨大挑战。提出的工作重点是通过仔细设计其单体亚基来控制超分子聚合物的大小和形状。该提案的智力价值在于其目标是开发自组装模式,该模式集成了机械和键合力、聚集动力学和模板策略,以模拟生物结构的方式定义超分子聚合物的大小和形状。这些受自然启发的合成结构可以实现高水平的结构控制,这对新功能至关重要。这个程序研究了三种不同的代码来精确控制超分子的大小和形状。在一种方法中,使用带相反电荷的两亲分子产生弯曲(非球形)囊泡。这些流体膜将用于将薄金属层或半导体矿物模板化为非球形三维结构。第二种方法是使用卷曲的肽,将其组装成蘑菇形状的极性聚集体。然后,精确长度的带电聚合物(例如DNA)将通过精确的尺寸控制模板形成高阶组件。在第三种方法中,使用小分子来组装一维结构,其中形态由分子结构和生长动力学控制。从初步研究中学到的原理将应用于形成更复杂的结构和超分子嵌段共聚物。这三个项目都需要化学合成、电子显微镜和衍射技术,以及粗粒度建模。非技术总结:从自然界中看到的复杂结构中学习已经成为现代材料研究的主要目标之一。其动机是设计新的、复杂的材料,如用于电子、能源或传感设备的人工分子马达,以及用于修复组织和器官的生物医学材料。这项工作涉及物理科学、生命科学和工程学科,因此是培养未来科学家和国际合作的绝佳平台。作为迈向复杂功能材料目标的一步,提出的研究涉及精确控制几个自组装系统的形状和大小。一种方法是使用精确长度的DNA分子作为外部模板来决定合成材料中成分的尺寸。另一种方法是让分子形成类似于许多病毒的非球形纳米结构。提议的工作将对材料研究研究生的跨学科教育产生广泛的影响,因为每个提议的项目都在合成化学、物理和材料科学的界面上运作。一些来自弱势群体的学生正在PI的实验室接受这种培训,拟议的项目可以极大地扩展这一努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Stupp其他文献
MP45-07 SONIC HEDGEHOG PROMOTES CAVERNOUS NERVE REGENERATION BY INDUCING SPROUTING OF NEURONS IN THE PELVIC GANGLIA AND CAVERNOUS NERVE
- DOI:
10.1016/j.juro.2017.02.1425 - 发表时间:
2017-04-01 - 期刊:
- 影响因子:
- 作者:
Ryan Dobbs;Shawn Choe;Gail Prins;Daniel Harrington;Samuel Stupp;Kevin McVary;Carol Podlasek - 通讯作者:
Carol Podlasek
755 PEPTIDE AMPHIPHILE NANOFIBER DELIVERY OF SONIC HEDGEHOG PROTEIN TO REDUCE SMOOTH MUSCLE APOPTOSIS IN THE PENIS AFTER CAVERNOUS NERVE RESECTION
- DOI:
10.1016/j.juro.2011.02.1780 - 发表时间:
2011-04-01 - 期刊:
- 影响因子:
- 作者:
Christopher Bond;Nicholas Angeloni;Daniel Harrington;Samuel Stupp;Kevin McKenna;Carol Podlasek - 通讯作者:
Carol Podlasek
MP52-12 MECHANISM OF CAVERNOUS NERVE REGENERATION BY SONIC HEDGEHOG
- DOI:
10.1016/j.juro.2015.02.1729 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:
- 作者:
Christopher Bond;Daniel Harrington;Samuel Stupp;Carol Podlasek - 通讯作者:
Carol Podlasek
P104 - A systemically-injected targeted nitric oxide-delivery vehicle durably inhibits neointimal hyperplasia after arterial injury
- DOI:
10.1016/j.niox.2014.09.052 - 发表时间:
2014-11-15 - 期刊:
- 影响因子:
- 作者:
Edward Bahnson;Tyson Moyer;Hussein Kassam;Janet Vercammen;Samuel Stupp;Melina Kibbe - 通讯作者:
Melina Kibbe
1001 SONIC HEDGEHOG REGULATION OF BDNF IN THE CAVERNOUS NERVE
- DOI:
10.1016/j.juro.2012.02.1103 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:0
- 作者:
Christopher Bond;Nicholas Angeloni;Daniel Harrington;Samuel Stupp;Carol Podlasek - 通讯作者:
Carol Podlasek
Samuel Stupp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Stupp', 18)}}的其他基金
Spatial Organization of Ions in Supramolecular Nanostructures
超分子纳米结构中离子的空间组织
- 批准号:
2102662 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Shape and Dimensional Precision in Polymeric Nanostructures
聚合物纳米结构的形状和尺寸精度
- 批准号:
1508731 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Shape and Dimensional Precision in Polymeric Nanostructures
聚合物纳米结构的形状和尺寸精度
- 批准号:
0605427 - 财政年份:2006
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
FRG: Mechanically- and Biologically-Active Nickel-Titanium Foamas Biomimetic Material for Skeletal Repair
FRG:用于骨骼修复的机械和生物活性镍钛泡沫仿生材料
- 批准号:
0505772 - 财政年份:2005
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
US/Japan BioNanotechnology Exchange Workshop; Japan
美国/日本生物纳米技术交流研讨会;
- 批准号:
0519379 - 财政年份:2005
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
FRG: Organoapatite-Coated Titanium Foam: A Biohybrid for Skeletal Repair
FRG:有机磷灰石涂层钛泡沫:用于骨骼修复的生物混合物
- 批准号:
0108342 - 财政年份:2001
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Supramolecular and Covalent Polymer Nanostructures
超分子和共价聚合物纳米结构
- 批准号:
9972048 - 财政年份:1999
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Supramolecular and Covalent Polymer Nanostructures
超分子和共价聚合物纳米结构
- 批准号:
9996253 - 财政年份:1999
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Workshop on Interdisciplinary Macromolecular Science and Engineering
跨学科高分子科学与工程研讨会
- 批准号:
9714024 - 财政年份:1997
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
SHF: Small: Efficient, Deterministic and Formally Certified Methods for Solving Low-dimensional Linear Programs with Floating-point Precision
SHF:小型:用于以浮点精度求解低维线性程序的高效、确定性且经过正式认证的方法
- 批准号:
2312220 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Development of a method for single molecule observation of three-dimensional cultured cells for high-precision molecular targeted drug discovery
开发三维培养细胞单分子观察方法,用于高精度分子靶向药物发现
- 批准号:
22K14229 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3-Dimensional virtual ventricles to design precision therapies in hypertrophic cardiomyopathy
3 维虚拟心室设计肥厚型心肌病的精准疗法
- 批准号:
10381681 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
3-Dimensional virtual ventricles to design precision therapies in hypertrophic cardiomyopathy
3 维虚拟心室设计肥厚型心肌病的精准疗法
- 批准号:
10215670 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Development and clinical effectiveness of a new three-dimensional dose distribution evaluation method in high-precision radiotherapy
高精度放疗三维剂量分布评价新方法的研制及临床效果
- 批准号:
21K07662 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of precision three-dimensional image recognition using a novel microwave breast diagnostic imaging system
使用新型微波乳腺诊断成像系统开发精密三维图像识别
- 批准号:
20K16444 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
High-speed and three-dimensional measurement of ultrasonic wave propagation with nanometer-order precision
纳米级精度的超声波传播高速三维测量
- 批准号:
20K21001 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of high-precision and real-time three-dimensional temperature measurement method in a liquid using deep learning
利用深度学习开发高精度实时液体三维温度测量方法
- 批准号:
20K04306 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
EAGER: Three-Dimensional Printing of Functional Nanobots for Precision Gene Delivery
EAGER:用于精确基因传递的功能纳米机器人的三维打印
- 批准号:
1937653 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Fusing precision machining and three-dimensional photolithography and application to realize the shark skin inspired riblet surface for reducing air resistance
融合精密加工和三维光刻及应用,实现鲨鱼皮启发的肋纹表面,以减少空气阻力
- 批准号:
19K04132 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




