Collaborative Proposal: Quadratic Inverse Eigenvalue Problems for Model Updating in Science and Engineering: Theory and Computation
合作提案:科学与工程模型更新的二次逆特征值问题:理论与计算
基本信息
- 批准号:0505784
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is devoted to the study of three inverse quadraticeigenproblems with their pertinence to physical and engineeringapplications. The aim is to develop theoretic understanding andderive numerical algorithms for the quadratic model reconstructionso that the inexactness and uncertainty inherent in the model dueto the limitation of current technologies are reduced while certainspecific mathematical conditions are satisfied. The most difficulttask in the quadratic model reconstruction is to satisfy the associatedconstraints which could be inherited intrinsically from the physicalfeasibility of a certain mechanical structure or could be drivenextrinsically by the desirable property of a certain design parameter.The greatest challenge, which is also an imperative requirement inpractice, is that the reconstruction must be carried out using onlypartial eigeninformation which are available by the state-of-the-artcomputational techniques. The inverse problem of constrained modelreconstruction is essential for the understanding and management ofcomplex systems, yet many questions on the solvability, sensitivity,and computation remain unanswered. The investigators have madesignificant contributions to the quadratic model construction problemsindividually and now intend to extend their investigation and joinexpertise to these challenging inverse problems. This proposed worktherefore should be of compelling independent interest within boththe engineering and mathematical sciences communities.In mathematical modelling, techniques of inverse problems that validate,determine, or estimate the parameters of the system according to itsobserved or expected behavior are critically important. This researchconcentrates on the inverse model reconstruction problems with theirpertinence to physical and engineering applications. These problems havebeen strongly motivitated by scietific and industrial applications,including structural mechanics such as vibration control and stabilityanalysis of bridges, buildings and highways, vibro-acoustics such aspredictive coding of sound, biomedical signal and image processing,time series forecasting, information technology, and others. Thus thisproject will impact a wide variety of industries utilizing theseapplications, including aerospace, automobile, manufacturing andbiomedical engineering. The greatest challenge facing these industriesis to manufacture increasingly improved products with limited engineeringand computing resources. A great deal of money and efforts have been spentin these industries to satisactorily perform the model updating task.However, the lack of proper theory and computational tools often forcethese industries to solve their problems in an ad hoc fashion. An improvedanalytical model that can be used with confidence for future designs isan essential tool in achieving this obejective. The propsed research hasnot only strong mathematical foundation but also significant matematicalmodelling and experimental aspects using idustrial data which should beinstantly welcome by the industries. Furthermore, the students workingon this project for four years will receive a valuable interdisciplnarytraining blending mathematics and scietific computing with various areasof engineering and applied sciences. Such expertise is rare to find,but there is an increasing demand both inacademia and industries.
本项目致力于研究三个具有物理和工程应用价值的二次特征值反问题。目的是发展理论理解和推导二次模型重建的数值算法,以便在满足某些特定数学条件的同时,减少由于当前技术的限制而导致的模型中固有的不精确性和不确定性。二次模型重构中最困难的问题是满足相关的约束条件,这些约束条件可能是从某种机械结构的物理可行性中固有的,也可能是由某种设计参数的期望性质所驱动的,最大的挑战也是实践中的迫切要求,是重建必须只使用部分特征信息,这是由国家的最先进的计算技术。约束模型重构的逆问题对于理解和管理复杂系统是必不可少的,但其可解性、灵敏度和计算量等问题仍有待解决。 研究人员已经取得了显着的贡献,二次模型的建设problemsindividually,现在打算扩大他们的调查和joinexpertise这些具有挑战性的逆问题。因此,这一建议的工作应该是令人信服的独立的兴趣在boththe工程和数学科学community.In数学建模,技术的反问题,验证,确定,或估计系统的参数,根据itsobserved或预期的行为是至关重要的。本文主要研究具有物理意义和工程应用价值的逆模型重建问题.这些问题已经强烈地被科学和工业应用所激发,包括结构力学如桥梁、建筑物和高速公路的振动控制和稳定性分析,振动声学如声音的预测编码,生物医学信号和图像处理,时间序列预测,信息技术等。因此,该项目将影响到利用这些应用的各种行业,包括航空航天、汽车、制造业和生物医学工程。这些行业面临的最大挑战是用有限的工程和计算资源制造越来越多的改进产品。这些行业已经花费了大量的金钱和精力来满意地执行模型更新任务,然而,缺乏适当的理论和计算工具往往迫使这些行业以特设的方式解决他们的问题。改进的分析模型可以放心地用于未来的设计,是实现这一目标的重要工具。所提出的研究不仅具有强大的数学基础,而且具有重要的数学建模和实验方面,使用IDUNOMIC数据,这应该立即受到业界的欢迎。此外,在这个项目上工作四年的学生将获得一个有价值的跨学科培训,将数学和科学计算与工程和应用科学的各个领域相结合。 这样的专业知识很难找到,但在学术界和工业界都有越来越多的需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Biswa Nath Datta其他文献
Parallel and large-scale matrix computations in control: some ideas
- DOI:
10.1016/0024-3795(89)90705-2 - 发表时间:
1989-08-01 - 期刊:
- 影响因子:
- 作者:
Biswa Nath Datta - 通讯作者:
Biswa Nath Datta
A Block Algorithm for Multi-Input Eigenvalue Assignment
- DOI:
10.1016/s1474-6670(17)39008-0 - 发表时间:
2001-08-01 - 期刊:
- 影响因子:
- 作者:
Jo˜ao B Carvalho;Biswa Nath Datta - 通讯作者:
Biswa Nath Datta
On the effective computation of the inertia of a non-hermitian matrix
- DOI:
10.1007/bf01398647 - 发表时间:
1979-09-01 - 期刊:
- 影响因子:2.200
- 作者:
David Carlson;Biswa Nath Datta - 通讯作者:
Biswa Nath Datta
An Arnoldi-Based Divide and Conquer Algorithm for Discrete Sylvester Equation
- DOI:
10.1016/s1474-6670(17)30447-0 - 发表时间:
2004-12-01 - 期刊:
- 影响因子:
- 作者:
Biswa Nath Datta;Wujian Peng - 通讯作者:
Wujian Peng
Biswa Nath Datta的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Biswa Nath Datta', 18)}}的其他基金
Computational Methods for Feedback Control Problems of Matrix Second Order and Distributed Parameter Systems
矩阵二阶分布参数系统反馈控制问题的计算方法
- 批准号:
0074411 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
Large-Scale and Parallel Matrix Computations in Linear Control
线性控制中的大规模并行矩阵计算
- 批准号:
9212629 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
RESEARCH PROPOSAL What is your project title? Development of additive manufactured polymeric seals for low molecular weight gases
研究计划 您的项目名称是什么?
- 批准号:
2908868 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
Development of a low-pressure loss air purification device using rotating porous media and a proposal for its use in ventilation systems
使用旋转多孔介质的低压损失空气净化装置的开发及其在通风系统中的使用建议
- 批准号:
24K17404 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
- 批准号:
EP/Y034392/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Conference: Supporting Mentoring in STEM Graduate Education: A Proposal for Virtual Workshops and Supporting Activities
会议:支持 STEM 研究生教育辅导:虚拟研讨会和支持活动的提案
- 批准号:
2413980 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Time-Sharing Experiments for the Social Sciences (TESS): Proposal for Renewed Support, 2020-2023
合作研究:社会科学分时实验(TESS):2020-2023 年更新支持提案
- 批准号:
2424057 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Travel: Texas Power and Energy Conference (TPEC) 2024 Travel Proposal
旅行:德克萨斯州电力与能源会议 (TPEC) 2024 年旅行提案
- 批准号:
2341300 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Business and Local Government Data Research Centre Legacy Status Proposal
企业和地方政府数据研究中心遗留状态提案
- 批准号:
ES/Y003411/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Conference: Proposal for Student Participation Grant and Distinguished Speakers in Health Community
会议:学生参与补助金和健康社区杰出演讲者的提案
- 批准号:
2313255 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Equipment: Woods Hole Oceanographic Institution 2023 OI Proposal
设备:伍兹霍尔海洋研究所 2023 年 OI 提案
- 批准号:
2313654 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




