Spin relaxation and spin coherence in nonmagnetic metallic ultrathin films and nanowires.

非磁性金属超薄膜和纳米线中的自旋弛豫和自旋相干。

基本信息

  • 批准号:
    170692815
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
    2010
  • 资助国家:
    德国
  • 起止时间:
    2009-12-31 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

In the field of spintronics, there is a vision of information transfer by spin-polarized currents through non-magnetic materials. In any material, however, dissipation of spin currents leads to spin relaxation and loss of information. The corresponding spin relaxation rate depends on intrinsic and extrinsic factors, such as point defects, crystal surfaces, lattice vibrations, etc., which all together contribute to spin-flip scattering via the effect of spin-orbit coupling (SOC). We aim at an understanding and quantitative prediction of these phenomena, with special focus on thin and ultra-thin metallic films that are commonly used in experimental spintronics devices, but also in nanowires where the reduced dimensionality can lead to surprising new physics. We wish to understand how spin relaxation is affected by the sample-dependent electronic structure, such as surface states, scattering at the substrate, or impurities that occur during sample preparation. We want to compare the effect of scattering at point defects to that of phonons, and to see if the Elliott-Yafet type of relaxation is dominant, or if the Dyakonov- Perel mechanism for spin decoherence can be also important. Finally we want to see if the reduced dimensionality can partly suppress spin relaxation even in the presence of strong spin-orbit coupling, in view of the importance of the latter for the spin-Hall effect.
在自旋电子学领域,有一种通过非磁性材料的自旋极化电流进行信息传输的设想。然而,在任何材料中,自旋电流的耗散都会导致自旋弛豫和信息丢失。相应的自旋弛豫速率取决于内在和外在因素,例如点缺陷、晶体表面、晶格振动等,它们通过自旋-轨道耦合(SOC)的效应一起促成自旋翻转散射。我们的目标是理解和定量预测这些现象,特别关注通常用于实验自旋电子器件的薄和超薄金属薄膜,以及纳米线,其中降低的维度可以导致令人惊讶的新物理。我们希望了解自旋弛豫是如何影响样品依赖的电子结构,如表面状态,在基板上的散射,或在样品制备过程中发生的杂质。我们想比较点缺陷处的散射效应与声子的散射效应,看看埃利奥特-雅菲型弛豫是否占主导地位,或者迪雅科诺夫-佩雷尔自旋退相干机制是否也很重要。最后,我们想看看,如果减少维数可以部分抑制自旋弛豫,即使在存在强自旋轨道耦合,鉴于后者的重要性的自旋霍尔效应。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anisotropy of spin relaxation in metals.
  • DOI:
    10.1103/physrevlett.109.236603
  • 发表时间:
    2012-10
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    B. Zimmermann;P. Mavropoulos;S. Heers;N. H. Long;S. Blügel;Y. Mokrousov
  • 通讯作者:
    B. Zimmermann;P. Mavropoulos;S. Heers;N. H. Long;S. Blügel;Y. Mokrousov
Anisotropy of spin relaxation and transverse transport in metals
  • DOI:
    10.1088/0953-8984/25/16/163201
  • 发表时间:
    2012-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Mokrousov;Hongbin Zhang;F. Freimuth;B. Zimmermann;N. H. Long;J. Weischenberg;Ivo Souza;P. Mavropoulo
  • 通讯作者:
    Y. Mokrousov;Hongbin Zhang;F. Freimuth;B. Zimmermann;N. H. Long;J. Weischenberg;Ivo Souza;P. Mavropoulo
Spin relaxation and spin Hall transport in 5d transition-metal ultrathin films
  • DOI:
    10.1103/physrevb.90.064406
  • 发表时间:
    2014-05
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    N. H. Long;P. Mavropoulos;B. Zimmermann;D. Bauer;S. Blugel;Y. Mokrousov
  • 通讯作者:
    N. H. Long;P. Mavropoulos;B. Zimmermann;D. Bauer;S. Blugel;Y. Mokrousov
Spin relaxation and the Elliott-Yafet parameter in W(001) ultrathin films: Surface states, anisotropy, and oscillation effects
W(001) 超薄膜中的自旋弛豫和 Elliott-Yafet 参数:表面态、各向异性和振荡效应
  • DOI:
    10.1103/physrevb.87.224420
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    N. H. Long;P. Mavropoulos;S. Heers;B. Zimmermann;D. S. G. Bauer;S. Blügel;Y. Mokrousov
  • 通讯作者:
    Y. Mokrousov
Spin-flip hot spots in ultrathin films of monovalent metals: Enhancement and anisotropy of the Elliott-Yafet parameter
单价金属超薄膜中的自旋翻转热点:Elliott-Yafet 参数的增强和各向异性
  • DOI:
    10.1103/physrevb.88.144408
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    N. H. Long;P. Mavropoulos;S. Heers;B. Zimmermann;Y. Mokrousov;S. Blügel
  • 通讯作者:
    S. Blügel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Yuriy Mokrousov其他文献

Professor Dr. Yuriy Mokrousov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Yuriy Mokrousov', 18)}}的其他基金

Antiferromagnets for spinorbitronics from ab-initio theory
从头算理论用于自旋电子学的反铁磁体
  • 批准号:
    332785078
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Topological transverse spin, charge and heat transport driven by temperature gradients in transition-metal compounds from first principles
根据第一原理,过渡金属化合物中的温度梯度驱动的拓扑横向自旋、电荷和热传输
  • 批准号:
    198064367
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Ab initio investigation of the anomalous Hall effect in thin films of transition metals
过渡金属薄膜中反常霍尔效应的从头算研究
  • 批准号:
    86791555
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Ab-initio discovery of high-temperature topological magnetic materials
高温拓扑磁性材料的从头开始发现
  • 批准号:
    448880005
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Magneto-chiral transport effects of skyrmions
斯格明子的磁手性输运效应
  • 批准号:
    403235169
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Understanding anti-spin-relaxation coatings for gaseous atoms from the inside of the coatings
从涂层内部了解气态原子的抗自旋弛豫涂层
  • 批准号:
    23H01845
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Non-resonance Electron Spin Imaging
非共振电子自旋成像
  • 批准号:
    10303578
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Non-resonance Electron Spin Imaging
非共振电子自旋成像
  • 批准号:
    10448504
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
He^3 Cryostat for Muon Spin Rotation/Relaxation Studies of Quantum Materials
用于量子材料 Mu 子自旋旋转/弛豫研究的 He^3 低温恒温器
  • 批准号:
    RTI-2021-00680
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Tools and Instruments
Studies of positive muon diffusion and trapping by Muon Spin Rotation and Relaxation method to understand hydrogen embrittlement in Fe alloys
通过 Mu 子自旋旋转和弛豫方法研究正 μ 子扩散和捕获,以了解 Fe 合金中的氢脆
  • 批准号:
    20H02037
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a novel evaluation method for the plasticization by using with proton spin relaxation time measurement
开发一种利用质子自旋弛豫时间测量的塑化评价新方法
  • 批准号:
    19K05533
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Polarimetric neutron spin echo spectroscopy for the study of magnetic relaxation mechanism
用于研究磁弛豫机制的偏振中子自旋回波谱
  • 批准号:
    19K20601
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Clarification and control of valley-spin polarization relaxation in two-dimensional transition metal dichalcogenides
二维过渡金属二硫属化物中谷自旋极化弛豫的澄清和控制
  • 批准号:
    19K14633
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a non-destructive method to study hydrogen behavior and hydrogen embrittlement resistance using muon spin relaxation spectroscopy
开发一种利用μ子自旋弛豫光谱研究氢行为和抗氢脆性的非破坏性方法
  • 批准号:
    18H01747
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Relationship between spin transition temperature and thermal relaxation temperature from light-induced excited high spin phase on mononuclear complexes having linear hexadentate ligand
具有线性六齿配体的单核配合物上光诱导激发高自旋相的自旋转变温度与热弛豫温度之间的关系
  • 批准号:
    18K14240
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了