Non-resonance Electron Spin Imaging
非共振电子自旋成像
基本信息
- 批准号:10448504
- 负责人:
- 金额:$ 18.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcidityAddressAlgorithmsAmplifiersBiomedical EngineeringBlood capillariesCell NucleusChemicalsClinicalClinical ResearchClinical SciencesClinical TrialsCollaborationsComputer softwareDataDetectionDevelopmentDevicesElectron Spin Resonance SpectroscopyElectronsElementary ParticlesEngineeringEnvironmentEquilibriumFourier SeriesFrequenciesFunctional ImagingFutureGeometryGoalsHeatingHumanHydrogelsImageImaging DeviceImaging PhantomsImaging technologyIndividualInstitutesLaboratoriesLithiumLocationMagnetic ResonanceMagnetic Resonance ImagingMalignant NeoplasmsMathematicsMeasurementMeasuresMedicineMethodologyMethodsModelingMolecularNoiseOrgan ModelOxidation-ReductionOxygenPartial PressureParticulatePatternPenetrationPeriodicityPhasePhysiologic pulsePolymersRadiationRadio WavesRelaxationReporterReportingReproducibilityResolutionRotationSamplingScanningSignal TransductionSourceSumSystemTechnologyTestingTimeTissue ModelTissuesTranslational ResearchTumor OxygenationUniversitiesUniversity of Virginia Cancer CenterWaterWest Virginiabasebiomedical imagingclinical applicationcollegedesigndetection methoddetection sensitivitydetectorelectrical propertyexperimental studyhuman modelhuman tissueimage reconstructionimaging modalityimaging systemimprovedinnovationinventionmagnetic fieldmechanical propertiesmembernanosecondnew technologynovelparticlepreclinical studyquantumquantum sensingradio frequencyrate of changeresponsestemtumorvectorvoltage
项目摘要
Project Summary /Abstract
Traditional magnetic resonance imaging methods, such as MRI, use radiofrequency (RF) waves to manipulate
the spin, a quantum-mechanical property of subatomic particles. These particles include various types of nuclei
and the electron. Constant magnetic fields are used in experiments, the strength of which must match the RF to
observe resonance phenomena. The spins are very sensitive reporters of their local molecular environment.
They can report the concentration, dynamics, and interactions of the surrounding molecules. However, the
current resonance approach has its limitations that stem from the use of radio waves. When RF propagates
through the sample, only an infinitesimally small amount of power contributes to the observable signals. Most of
the energy is absorbed by the imaged object. RF energy dissipates as heat. Associated with this very inefficient
use of power are multiple problems such as sample heating, limited penetration depth, power saturation of signal
amplifiers, spin system saturation (distorts data), and increased noise. These problems are especially critical for
electron-based paramagnetic resonance imaging. An alternative to traditional EPR, RF-free non-resonance
electron spin imaging (NESI) method is proposed. This technology overcomes the limitations associated with
the use of RF power. The key concept behind NESI is relatively simple. In the traditional methods, RF is used to
rotate spin magnetization relative to the constant magnetic field. In NESI, the magnetic field is rotated with
respect to the magnetization vector. Both experiments measure the precession of the magnetization vector
around the constant magnetic field. Several innovative mathematical and engineering solutions are proposed to
transform the described above concept into a fully functional imaging system. The NESI instrument will be built
and rigorously tested using a wide range of samples (phantoms) with pre-determined geometry. A several-fold
increase in sensitivity is expected compared to the standard EPR imaging method when traditional classical
detection methods are used. Recent developments of quantum sensing promise unprecedented sensitivity for
the detection of electron spin signals. These novel technologies are incompatible with the traditional EPR.
Several standard types of spin probes will be used to image oxygen partial pressure (pO2) and acidity (pH)
distribution in these phantoms. In future studies, NESI will be used in pre-clinical and clinical studies. Imaging of
chemical microenvironment in bio-printed tissue and organ models is another important application of this
technology.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Tseytlin其他文献
Mark Tseytlin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Tseytlin', 18)}}的其他基金
Multifunctional in Vivo EPR Imaging of Tumor Microenvironment
肿瘤微环境的多功能体内 EPR 成像
- 批准号:
9165285 - 财政年份:2016
- 资助金额:
$ 18.48万 - 项目类别:
Multifunctional in Vivo EPR Imaging of Tumor Microenvironment
肿瘤微环境的多功能体内 EPR 成像
- 批准号:
9281733 - 财政年份:2016
- 资助金额:
$ 18.48万 - 项目类别:
Enhancing in vivo EPR imaging using spin probes with short relaxation times
使用弛豫时间短的自旋探针增强体内 EPR 成像
- 批准号:
8577463 - 财政年份:2013
- 资助金额:
$ 18.48万 - 项目类别:
Enhancing in vivo EPR imaging using spin probes with short relaxation times
使用弛豫时间短的自旋探针增强体内 EPR 成像
- 批准号:
8929594 - 财政年份:2013
- 资助金额:
$ 18.48万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 18.48万 - 项目类别:
Research Grant