High Frequency Cavity Eigenmodes: Rapid Computational Methods, Applications and Asymptotics

高频腔本征模:快速计算方法、应用和渐进

基本信息

  • 批准号:
    0507614
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2005-09-30
  • 项目状态:
    已结题

项目摘要

The investigator seeks to develop efficient and robust numerical tools for calculating the resonant modes of cavities in two or more dimensions. These modes describe behavior of a wide variety of linear wave systems of technological importance, such as electromagnetic, optical, and acoustic cavities, elastic membranes, transverse modes of metallic waveguides, and bound energy states of quantum particles. It is hard to overestimate the impact that mathematical understanding of waves has had on society over the last century, particularly in communications technology. At high frequencies the wavelength becomes much smaller than the cavity size, and conventional numerical discretization methods become impractically slow, making the problem computationally challenging. Boundary integral equation methods, by using the known propagation across a uniform medium, solve the same problem with a much smaller number of degrees of freedom (scaling like the boundary area rather than the cavity volume), but suffer from the need to locate each resonant frequency (eigenvalue) individually.Building on exciting developments which emerged from the quantum physics community, the investigator has pioneered methods which combine this small number of degrees of freedom with the ability to compute a long sequence of modes simultaneously. This is based upon the `scaling method', a little-known variant of the Method of Particular Solutions. The remarkable efficiency gain compared to other boundary methods scales like the number of wavelengths on the boundary (its `electrical area'), and has been shown to be a thousand times faster than any other known method at very high frequencies. However, the mechanism controlling the size of errors intrinsic to the method is unknown. The investigator proposes to apply the tools of numerical analysis to understand these errors, to seek to widen the range of cavity geometries, and boundary conditions, to which it can be applied (for instance, cavities with re-entrant corners, or in three dimensions), and to write a robust software package that can allow other researchers to benefit from these new efficient methods.The investigator will continue to apply the method in two exciting areas to which it is well adapted: i) the design and modeling of micro-cavity dielectric lasers, which can give higher powers for optical fiber communications and could enable fabrication of integrated optics `on a chip', and ii) `quantum chaos', the semiclassical (high frequency) behavior of resonances of cavities whose shape leads to chaotic ray motion. Understanding the distribution and statistics of wave intensities in such modes has impact in atomic physics and chemistry, as well as for mathematical questions arising in automorphic forms and number theory. Quantum chaos can also model electronic transport and dissipation in quantum dots, nanoscale laboratories for coherent wave electron effects, which are promising candidates for quantum computers. Finally, the development of rapid solvers for resonant modes, especially for the Maxwell equations, would have far-reaching benefits for the design and shape optimization of optical and microwave resonators used throughout the engineering world.
研究者试图开发有效且鲁棒的数值工具,以在两个或多个维度上计算腔的共振模式。 这些模式描述了多种技术重要性的线性波系统的行为,例如电磁,光学和声腔,弹性膜,金属波导的横向模式以及量子颗粒的界能状态。 很难高估对波浪在上个世纪(尤其是通信技术)对波浪的数学理解对社会产生的影响。 在高频率下,波长比空腔大小要小得多,并且常规的数值离散方法在不切实际的速度下变得不切实际,从而使问题在计算上具有挑战性。 Boundary integral equation methods, by using the known propagation across a uniform medium, solve the same problem with a much smaller number of degrees of freedom (scaling like the boundary area rather than the cavity volume), but suffer from the need to locate each resonant frequency (eigenvalue) individually.Building on exciting developments which emerged from the quantum physics community, the investigator has pioneered methods which combine this small number of degrees of freedom具有同时计算长序列的能力。 这是基于“缩放方法”,这是特定解决方案方法的鲜为人知的变体。 与其他边界方法相比,显着的效率增益量表,例如边界上的波长数量(其“电气区域”),并且已显示出比任何其他已知方法在非常高的频率下的速度快一千倍。 但是,控制该方法固有的误差大小的机制尚不清楚。 研究者建议应用数值分析的工具来了解这些错误,以扩大可以应用其应用的腔范围和边界条件的范围(例如,具有重新进入角或三个维度的腔体),并在其他有效的方法中受益于这些新的方法。微型腔电介质激光器的建模,可以为光纤通信提供更高的功能,并能够制造集成的光学元件“芯片上”,ii)``量子混乱'',``量子混沌'',奇异的(高频)腔共鸣的行为,其形状会导致Chaotic Ray运动。 了解这种模式中波强度的分布和统计数据对原子理和化学以及在自动形式和数字理论中产生的数学问题产生了影响。 量子混乱还可以对量子点,纳米级实验室中的电子传输和耗散进行建模,以进行连贯的波电子效应,这是量子计算机的有希望的候选者。 最后,对于谐音模式的快速求解器的开发,尤其是对于麦克斯韦方程,将对整个工程世界中使用的光学和微波谐振器的设计和形状优化具有深远的好处。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Barnett其他文献

Alexander Barnett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Barnett', 18)}}的其他基金

CBMS Conference: Algorithms for solving elliptic PDEs on modern computers---fast direct solvers, randomized methods, and high order discretizations,
CBMS 会议:在现代计算机上求解椭圆偏微分方程的算法——快速直接求解器、随机方法和高阶离散化,
  • 批准号:
    1347163
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Next-generation integral equation methods for wave scattering and propagation in periodic structures
周期性结构中波散射和传播的下一代积分方程方法
  • 批准号:
    1216656
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficient spectrally accurate global basis methods for high frequency wave scattering, chaotic eigenmodes, and photonics
适用于高频波散射、混沌本征模和光子学的高效光谱精确全局基础方法
  • 批准号:
    0811005
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
High Frequency Cavity Eigenmodes: Rapid Computational Methods, Applications and Asymptotics
高频腔本征模:快速计算方法、应用和渐进
  • 批准号:
    0545044
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

基于气体多通腔多模非线性效应的大能量可调谐光源的研究
  • 批准号:
    12374318
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
  • 批准号:
    32301204
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
介质-金属混合纳米腔与二维材料的相互作用及其光学调控
  • 批准号:
    12374347
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于腔光机械效应的石墨烯光纤加速度计研究
  • 批准号:
    62305039
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
离子液体压缩腔射流掺混与气阀两相流对离子液体循环量的影响机理
  • 批准号:
    52306049
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

染色体工学技術を応用した口腔がんの不死化制御遺伝子の機能解析
利用染色体工程技术分析口腔癌永生化控制基因的功能
  • 批准号:
    24K12885
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
睡眠時咬筋活動を考慮した口腔顔面領域の疼痛に対する感受性と自己表現の解析
考虑睡眠期间咬肌活动的口面部疼痛敏感性和自我表达分析
  • 批准号:
    24K13024
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
加齢における慢性ストレスでの口腔環境の網羅的解析
衰老过程中慢性应激引起的口腔环境综合分析
  • 批准号:
    24K13076
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ヒアルロン酸合成阻害剤による口腔癌のBcl2発現増強を標的とした老化細胞除去療法
使用透明质酸合成抑制剂增强口腔癌中 Bcl2 表达的衰老细胞去除疗法
  • 批准号:
    24K13090
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CTGFに着目した口腔上皮異形成阻害薬の開発
以CTGF为中心的口腔上皮不典型增生抑制剂的开发
  • 批准号:
    24K13096
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了