High Frequency Cavity Eigenmodes: Rapid Computational Methods, Applications and Asymptotics

高频腔本征模:快速计算方法、应用和渐进

基本信息

  • 批准号:
    0507614
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2005-09-30
  • 项目状态:
    已结题

项目摘要

The investigator seeks to develop efficient and robust numerical tools for calculating the resonant modes of cavities in two or more dimensions. These modes describe behavior of a wide variety of linear wave systems of technological importance, such as electromagnetic, optical, and acoustic cavities, elastic membranes, transverse modes of metallic waveguides, and bound energy states of quantum particles. It is hard to overestimate the impact that mathematical understanding of waves has had on society over the last century, particularly in communications technology. At high frequencies the wavelength becomes much smaller than the cavity size, and conventional numerical discretization methods become impractically slow, making the problem computationally challenging. Boundary integral equation methods, by using the known propagation across a uniform medium, solve the same problem with a much smaller number of degrees of freedom (scaling like the boundary area rather than the cavity volume), but suffer from the need to locate each resonant frequency (eigenvalue) individually.Building on exciting developments which emerged from the quantum physics community, the investigator has pioneered methods which combine this small number of degrees of freedom with the ability to compute a long sequence of modes simultaneously. This is based upon the `scaling method', a little-known variant of the Method of Particular Solutions. The remarkable efficiency gain compared to other boundary methods scales like the number of wavelengths on the boundary (its `electrical area'), and has been shown to be a thousand times faster than any other known method at very high frequencies. However, the mechanism controlling the size of errors intrinsic to the method is unknown. The investigator proposes to apply the tools of numerical analysis to understand these errors, to seek to widen the range of cavity geometries, and boundary conditions, to which it can be applied (for instance, cavities with re-entrant corners, or in three dimensions), and to write a robust software package that can allow other researchers to benefit from these new efficient methods.The investigator will continue to apply the method in two exciting areas to which it is well adapted: i) the design and modeling of micro-cavity dielectric lasers, which can give higher powers for optical fiber communications and could enable fabrication of integrated optics `on a chip', and ii) `quantum chaos', the semiclassical (high frequency) behavior of resonances of cavities whose shape leads to chaotic ray motion. Understanding the distribution and statistics of wave intensities in such modes has impact in atomic physics and chemistry, as well as for mathematical questions arising in automorphic forms and number theory. Quantum chaos can also model electronic transport and dissipation in quantum dots, nanoscale laboratories for coherent wave electron effects, which are promising candidates for quantum computers. Finally, the development of rapid solvers for resonant modes, especially for the Maxwell equations, would have far-reaching benefits for the design and shape optimization of optical and microwave resonators used throughout the engineering world.
研究人员寻求开发高效和强大的数值工具,用于计算两个或更多个维度的腔体的谐振模式。 这些模式描述了各种各样的线性波系统的技术重要性,如电磁,光学和声学腔,弹性膜,金属波导的横模,量子粒子的束缚能态。 在过去的世纪里,人们对波的数学理解对社会的影响,特别是对通信技术的影响,怎么估计都不为过。 在高频下,波长变得比腔的尺寸小得多,并且传统的数值离散化方法变得不切实际地慢,使得问题在计算上具有挑战性。 边界积分方程方法利用均匀介质中的已知传播,以更少的自由度求解同样的问题(像边界面积而不是腔体体积那样缩放),但是需要定位每个谐振频率(特征值)单独。建立在量子物理学界出现的令人兴奋的发展基础上,研究者已经开创了将这种少量的自由度与同时计算长的模式序列的能力相结合的联合收割机的方法。 这是基于“比例法”,一个鲜为人知的特殊解决方案的方法的变体。 与其他边界方法相比,显着的效率增益与边界上的波长数量(其“电区域”)相似,并且已被证明在非常高的频率下比任何其他已知方法快一千倍。 然而,控制该方法固有误差大小的机制尚不清楚。 研究人员建议应用数值分析的工具来理解这些错误,以寻求扩大空腔几何形状和边界条件的范围,并将其应用于其中(例如,具有凹入角的空腔,或三维空腔),并编写一个强大的软件包,可以让其他研究人员受益于这些新的有效方法。研究人员将继续应用该方法,它很好地适应了两个令人兴奋的领域:一)微腔电介质激光器的设计和建模,它可以为光纤通信提供更高的功率,并可以实现“芯片上”集成光学器件的制造,以及二)“量子混沌”,其形状导致混沌射线运动的腔体共振的半经典(高频)行为。 理解这种模式下波强度的分布和统计对原子物理学和化学以及自守形式和数论中出现的数学问题都有影响。 量子混沌还可以模拟量子点中的电子输运和耗散,量子点是相干波电子效应的纳米级实验室,是量子计算机的有希望的候选者。 最后,谐振模式,特别是麦克斯韦方程组的快速求解器的发展,将有深远的好处,整个工程世界使用的光学和微波谐振器的设计和形状优化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Barnett其他文献

Alexander Barnett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Barnett', 18)}}的其他基金

CBMS Conference: Algorithms for solving elliptic PDEs on modern computers---fast direct solvers, randomized methods, and high order discretizations,
CBMS 会议:在现代计算机上求解椭圆偏微分方程的算法——快速直接求解器、随机方法和高阶离散化,
  • 批准号:
    1347163
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Next-generation integral equation methods for wave scattering and propagation in periodic structures
周期性结构中波散射和传播的下一代积分方程方法
  • 批准号:
    1216656
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficient spectrally accurate global basis methods for high frequency wave scattering, chaotic eigenmodes, and photonics
适用于高频波散射、混沌本征模和光子学的高效光谱精确全局基础方法
  • 批准号:
    0811005
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
High Frequency Cavity Eigenmodes: Rapid Computational Methods, Applications and Asymptotics
高频腔本征模:快速计算方法、应用和渐进
  • 批准号:
    0545044
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

Chromaticity-adaptive direct white light generation from luminescent carbogenic nanomaterials coupled with nanophotonic cavity
发光碳原纳米材料与纳米光子腔耦合产生色度自适应直接白光
  • 批准号:
    24K17589
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EA/Ed: Acquisition of a carbon dioxide and methane Cavity Ringdown Spectrometer for education and research
EA/Ed:购买二氧化碳和甲烷腔衰荡光谱仪用于教育和研究
  • 批准号:
    2329285
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Spirit Use Case 2: Complex cavity ventilation/ compartment pressure relief digital twin
Spirit 用例 2:复杂腔体通风/隔间压力释放数字孪生
  • 批准号:
    10089679
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
CAREER: Cavity-Enforced Structure and Reactivity of High-Valent Iron Oxo, Nitrosyl, and Superoxo Complexes
职业:高价铁氧合、亚硝酰和超氧配合物的空腔强化结构和反应性
  • 批准号:
    2339280
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Cavity Ring Down Spectrometer (CRDS)
光腔衰荡光谱仪 (CRDS)
  • 批准号:
    516693059
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
SuperPlanckian Radiation via Cavity Guided Waves
通过腔导波的超普朗克辐射
  • 批准号:
    23H01352
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Highly efficient photocurrent and spin polarized current generation by cavity polariton
通过腔极化子产生高效光电流和自旋极化电流
  • 批准号:
    23H01942
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of coherent Raman spectroscopy based on cavity-enhanced phase-matched nonlinear optics
基于腔增强相位匹配非线性光学的相干拉曼光谱研究进展
  • 批准号:
    23H01987
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EAGER: Moire Cavity Single Emitter Lasers (MOCSELs)
EAGER:莫尔腔单发射激光器 (MOCSEL)
  • 批准号:
    2234513
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Open fiber-based cavity for spectroscopix experiments in semiconductor quantum optics
用于半导体量子光学光谱实验的开放式光纤腔
  • 批准号:
    517518181
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Major Research Instrumentation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了