Efficient spectrally accurate global basis methods for high frequency wave scattering, chaotic eigenmodes, and photonics

适用于高频波散射、混沌本征模和光子学的高效光谱精确全局基础方法

基本信息

  • 批准号:
    0811005
  • 负责人:
  • 金额:
    $ 31.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-15 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

Accurate and rapid numerical solution of the Helmholtz and related partial differential equations in complex geometries is key to future progress in device design, in imaging, and in basic science. However, at high frequencies (many wavelengths across the system) this becomes prohibitively challenging using direct discretization, due to the multiscale nature of the problem. The investigator seeks to build upon boundary-based methods which have been uniquely successful (up to a thousand times faster than the competition) in solving eigenmode problems hundreds of wavelength in size with spectral accuracy in two dimensions, and to extend them to the scattering problem, to more general media and periodic boundary conditions, and to three dimensions. These methods are global approximation by particular solution basis sets, and the scaling method for Dirichlet eigenmodes.Proposed extensions include: 1) use of fundamental solutions basis sets, and their analysis via the role of singularities in the analytic continuation of the wave field, 2) exploiting a little-known analytic formula for the fundamental solution in linear graded-index materials, enabling non-piecewise-constant media to be solved on the boundary, 3) error analysis of a reformulation of the scaling method via the Dirichlet-to-Neumann map for the domain, 4) application of such methods to the spectrally accurate solution of dielectric photonic crystal band structure, and to `quantum chaos' (the wave and spectral properties of cavities with ergodic ray dynamics).The impact of our technology such as radar, microwave communication (eg cellphones), optics and lasers, acoustics, medical ultrasound imaging, and miniaturized quantum devices has been, and will continue to be, profound and far-reaching. To design all such devices, one must calculate how they will reflect, guide and trap waves, and this is a time-intensive, difficult and sometimes unreliable computation.The computer algorithms proposed by the investigator will make such calculations faster and more accurate, particularly when the objects are large or complicated in shape. This is expected to lead to improvements in the design of, for example, optical signal-processing devices (which rely on microscopic periodic structures the size of the wavelength of light), promising candidates for the next generation of fast (post-silicon) computers. A deeper grasp of quantum chaos (the behavior of waves trapped in cavities which cause chaotic bouncing ofrays) would impact nanoscale quantum wave devices such as quantum dots, super-fast quantum computers, as well as areas of pure mathematics and physics theory. The proposal also provides training in applied and computational mathematics at both graduate and undergraduate levels, and a course on the ``Mathematics of Music and Sound'' introducing non-majors to waves, modes, and resonance.
准确和快速的数值解的亥姆霍兹和相关的偏微分方程在复杂的几何形状是关键,在设备设计,成像和基础科学的未来进展。 然而,在高频率下(系统中的许多波长),由于问题的多尺度性质,使用直接离散化变得非常具有挑战性。 研究人员试图建立在边界为基础的方法,已经独特的成功(比竞争对手快一千倍),在解决本征模问题的波长数百的大小与光谱精度在两个维度,并将其扩展到散射问题,更一般的介质和周期性的边界条件,并三维。 这些方法是通过特殊解基组的全局近似,以及Dirichlet本征模的标度方法。建议的扩展包括:1)基本解基组的使用,以及它们通过波场的解析延拓中奇点的作用的分析,2)利用线性梯度折射率材料中的基本解的鲜为人知的解析公式,使得能够在边界上求解非分段常数介质,3)通过域的Dirichlet-to-Neumann映射对缩放方法的重新表述进行误差分析,4)将这种方法应用于电介质光子晶体带结构的光谱精确解,我们的技术,如雷达、微波通信(如手机)、光学和激光、声学、医学超声成像和小型化量子器件等的影响已经并将继续是深刻和深远的。 为了设计所有这些装置,必须计算它们将如何反射、引导和捕获波,这是一个耗时、困难和有时不可靠的计算,研究人员提出的计算机算法将使这种计算更快和更准确,特别是当物体较大或形状复杂时。 预计这将导致光学信号处理设备(依赖于光波长大小的微观周期性结构)的设计改进,有望成为下一代快速(后硅)计算机的候选者。 对量子混沌(被困在空腔中的波的行为,导致混乱的反弹)的更深入的理解将影响纳米级量子波器件,如量子点,超高速量子计算机,以及纯数学和物理理论领域。 该提案还提供研究生和本科生应用和计算数学方面的培训,以及“音乐和声音数学”课程,向非专业人员介绍波、模式和共振。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Barnett其他文献

Alexander Barnett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Barnett', 18)}}的其他基金

CBMS Conference: Algorithms for solving elliptic PDEs on modern computers---fast direct solvers, randomized methods, and high order discretizations,
CBMS 会议:在现代计算机上求解椭圆偏微分方程的算法——快速直接求解器、随机方法和高阶离散化,
  • 批准号:
    1347163
  • 财政年份:
    2014
  • 资助金额:
    $ 31.05万
  • 项目类别:
    Standard Grant
Next-generation integral equation methods for wave scattering and propagation in periodic structures
周期性结构中波散射和传播的下一代积分方程方法
  • 批准号:
    1216656
  • 财政年份:
    2012
  • 资助金额:
    $ 31.05万
  • 项目类别:
    Standard Grant
High Frequency Cavity Eigenmodes: Rapid Computational Methods, Applications and Asymptotics
高频腔本征模:快速计算方法、应用和渐进
  • 批准号:
    0545044
  • 财政年份:
    2005
  • 资助金额:
    $ 31.05万
  • 项目类别:
    Standard Grant
High Frequency Cavity Eigenmodes: Rapid Computational Methods, Applications and Asymptotics
高频腔本征模:快速计算方法、应用和渐进
  • 批准号:
    0507614
  • 财政年份:
    2005
  • 资助金额:
    $ 31.05万
  • 项目类别:
    Standard Grant

相似海外基金

Heavy-metal-free colloidal quantum wells as efficient and spectrally narrow emitters for displays, biomarkers and single photon sources
不含重金属的胶体量子阱作为显示器、生物标记物和单光子源的高效窄光谱发射器
  • 批准号:
    2887761
  • 财政年份:
    2023
  • 资助金额:
    $ 31.05万
  • 项目类别:
    Studentship
Expanding multiparameter analyses of single cells and small particles with a 5-laser spectrally enabled flow cytometer
使用 5 激光光谱流式细胞仪扩展单细胞和小颗粒的多参数分析
  • 批准号:
    BB/X019977/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31.05万
  • 项目类别:
    Research Grant
Collaborative Research: SpecEES: Designing A Spectrally Efficient and Energy Efficient Data Aided Demand Driven Elastic Architecture for future Networks (SpiderNET)
合作研究:SpecEES:为未来网络设计频谱效率高、能源效率高的数据辅助需求驱动弹性架构 (SpiderNET)
  • 批准号:
    2323300
  • 财政年份:
    2023
  • 资助金额:
    $ 31.05万
  • 项目类别:
    Standard Grant
Novel application technology for retrofit application of spectrally selective coatings to overhead transmission and distribution lines
架空输配电线路光谱选择性涂层改造应用的新型应用技术
  • 批准号:
    10035560
  • 财政年份:
    2022
  • 资助金额:
    $ 31.05万
  • 项目类别:
    Collaborative R&D
Photonic frequency converter for spectrally agile seamless access network in millimeter-wave band
用于毫米波频段频谱敏捷无缝接入网络的光子频率转换器
  • 批准号:
    22K04116
  • 财政年份:
    2022
  • 资助金额:
    $ 31.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SWIFT: Coexisting spectrally-dense communications and passive sensing in directed multi-hop sub-millimeter-wave networks
SWIFT:在定向多跳亚毫米波网络中共存频谱密集通信和无源传感
  • 批准号:
    2229560
  • 财政年份:
    2022
  • 资助金额:
    $ 31.05万
  • 项目类别:
    Standard Grant
Computational Discovery of New Spectrally Selective Materials for Thin Film Applications
用于薄膜应用的新型光谱选择材料的计算发现
  • 批准号:
    2490978
  • 财政年份:
    2021
  • 资助金额:
    $ 31.05万
  • 项目类别:
    Studentship
Collaborative Research: Fast Spectrally-Encoded Photoacoustic Microscopy for Multi-Parameter Bioenergetic Characterization of Heterogeneous Cancer Cells
合作研究:快速光谱编码光声显微镜用于异质癌细胞的多参数生物能表征
  • 批准号:
    2036800
  • 财政年份:
    2021
  • 资助金额:
    $ 31.05万
  • 项目类别:
    Standard Grant
On scale operators of spectrally negative Markov additive processes
谱负马尔可夫加性过程的尺度算子
  • 批准号:
    21K13807
  • 财政年份:
    2021
  • 资助金额:
    $ 31.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigations of spectrally tunable, nanosecond laser pulse compression characteristics by SBS technique
利用 SBS 技术研究光谱可调纳秒激光脉冲压缩特性
  • 批准号:
    21K04934
  • 财政年份:
    2021
  • 资助金额:
    $ 31.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了