Renewal: Chemistry of the Earth's Deep Mantle and Core

更新:地球深部地幔和地核的化学

基本信息

  • 批准号:
    0510555
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-15 至 2010-02-28
  • 项目状态:
    已结题

项目摘要

The goal of this project is to determine the chemical properties of lower mantle and core materials at relevant deep Earth conditions in order to obtain direct experimental constraints on the chemical composition, formation, and evolution of the planet's interior. The project takes advantage of numerous recent developments in in situ high-pressure techniques, including synchrotron x-ray diffraction and spectroscopy, infrared and optical spectroscopy, neutron diffraction, and new high P-T diamond-cell methods. The project will address new questions regarding phase transformations, phase relations, and element partitioning in deep mantle silicates and oxides. This work will start with high P-T structural studies of deep mantle phases, including silicate perovskites, magnesiowustite, and the recently discovered post-perovskite phases. Additional studies will be carried out using new single-crystal x-ray diffraction and neutron diffraction techniques to the highest pressures. A series of complementary synchrotron x-ray spectroscopic techniques used to characterize the spin and oxidation state of Fe throughout the P-T range of the lower mantle. The phase relations of the major components of the deep lower mantle, D", and core-mantle boundary region will then be examined using a combination of in situ high P-T techniques and new microanalytical methods on quenched phases. The high P-T behavior of Fe to inner core conditions is crucial for constraining the composition, thermal state, evolution, and dynamics of the core. The question of additional, very high P-T phases of Fe and Fe-Ni alloys at 200 GPa and 3000 K will be investigated. High-resolution x-ray emission, nuclear resonant forward scattering, and Raman spectroscopies will be used to identify pressure-induced changes in electronic, magnetic, and vibrational properties of iron alloys to core pressures. High P-T x-ray diffraction measurements in the lower pressure range will also allow investigations of structural changes in the liquid state of Fe. The problem of the light element in the core will be examined in a few key pseudo-binary systems of Fe-Ni with oxygen, sulfur, silicon, and hydrogen using the same integrated array of diffraction and spectroscopic techniques. Depending on progress in the above tasks, additional elements and more complex core-forming chemical systems will be examined. Results from this project will be used to understand the chemistry of the Earth's deep interior, from the planet's ceramic mantle to its central, iron-rich core. In particular, the goals are to understand how the combined the extreme pressures and temperatures that prevail there (up to 3.6 million atmospheres and perhaps 6000 K at Earth's center) affect the materials that comprise these inaccessible regions of the planet. As such, the research will provide a basis for interpreting data on earthquakes, volcanic eruptions, deep-seated rocks brought up to the surface, and a variety of other geological, geophysical, and geochemical phenomena. The work will also improve our understanding of materials as a whole under extreme conditions, and as a consequence and will illuminate areas beyond the geosciences, in physics, chemistry, materials science, planetary science, and even biology. The work will augment and enhance activities at national experimental facilities (i.e., synchrotron and neutron sources), with the development of new techniques. In addition, the work will showcase the synergy between fundamental science and the development of new technologies, including new materials such as single crystal diamond as well as a variety of new microanalytical techniques. The project will also involve the training of students and both junior and senior scientists in the area of research.
该项目的目标是在相关的地球深部条件下确定下地幔和地核物质的化学性质,以获得对地球内部化学成分、形成和演化的直接实验约束。该项目利用了现场高压技术的许多最新发展,包括同步加速器x射线衍射和光谱、红外和光学光谱、中子衍射和新的高P-T钻石电池方法。该项目将解决深部地幔硅酸盐和氧化物的相变、相关系和元素分配等新问题。这项工作将从深部地幔相的高P-T结构研究开始,包括硅酸盐钙钛矿、镁武矿和最近发现的后钙钛矿相。进一步的研究将使用新的单晶x射线衍射和中子衍射技术在最高压力下进行。一系列互补的同步加速器x射线光谱技术用于表征整个下地幔P-T范围内铁的自旋和氧化态。然后,将使用原位高P-T技术和新的淬火相微分析方法相结合来检查深部下地幔、D′和核幔边界区域主要成分的相关系。铁在内核条件下的高P-T行为对限制内核的组成、热态、演化和动力学至关重要。研究了在200gpa和3000k下Fe和Fe- ni合金中附加的高P-T相的问题。高分辨率x射线发射、核共振前向散射和拉曼光谱将用于识别铁合金的电子、磁性和振动特性在核心压力下的压力诱导变化。在较低压力范围内的高P-T x射线衍射测量也将允许研究铁液态的结构变化。核心中轻元素的问题将在几个关键的铁-镍与氧、硫、硅和氢的伪二元系统中进行研究,使用相同的衍射和光谱技术集成阵列。根据上述任务的进展情况,将研究其他元素和更复杂的成核化学系统。这个项目的结果将用于了解地球深层内部的化学成分,从地球的陶瓷地幔到富含铁的核心。特别是,目标是了解那里普遍存在的极端压力和温度(高达360万个大气压,地球中心可能有6000 K)是如何影响构成地球上这些难以到达的区域的物质的。因此,这项研究将为解释地震、火山爆发、被带到地表的深层岩石以及其他各种地质、地球物理和地球化学现象的数据提供基础。这项工作还将提高我们对极端条件下材料的整体理解,因此,它将照亮地球科学以外的领域,如物理学、化学、材料科学、行星科学,甚至生物学。随着新技术的发展,这项工作将扩大和加强国家实验设施(即同步加速器和中子源)的活动。此外,这项工作将展示基础科学与新技术发展之间的协同作用,包括单晶金刚石等新材料以及各种新的微量分析技术。该项目还将涉及在研究领域培训学生以及初级和高级科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Russell Hemley其他文献

Russell Hemley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Russell Hemley', 18)}}的其他基金

Equipment: MRI: Track #1 Acquisition of a Physical Property Measurement System for Interdisciplinary Research and Education on Next Generation Materials
设备: MRI:轨道
  • 批准号:
    2320728
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Renewal: Simple Molecular Systems at Ultrahigh Pressures
更新:超高压下的简单分子系统
  • 批准号:
    2104881
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Machine Learning Algorithm Prediction and Synthesis of Next Generation Superhard Functional Materials
合作研究:DMREF:下一代超硬功能材料的机器学习算法预测与合成
  • 批准号:
    2119308
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Simple Molecular Systems at Ultrahigh Pressures
超高压下的简单分子系统
  • 批准号:
    1933622
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Simple Molecular Systems at Ultrahigh Pressures
超高压下的简单分子系统
  • 批准号:
    1809783
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Renewal: Simple Molecular Systems at Ultrahigh Pressures
更新:超高压下的简单分子系统
  • 批准号:
    1106132
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Simple Molecular Systems at Ultrahigh Pressures
超高压下的简单分子系统
  • 批准号:
    0805056
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of Giant Diamonds from Chemical Vapor Deposition for High-Pressure Research
用于高压研究的化学气相沉积巨型钻石的开发
  • 批准号:
    0550040
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Simple Molecular Systems at Ultrahigh Pressure
超高压下的简单分子系统
  • 批准号:
    0508988
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of the Single-Crystal Diamond from Chemical Vapor Deposition for the Next Generation High-Pressure Devices
用于下一代高压设备的化学气相沉积单晶金刚石的开发
  • 批准号:
    0421020
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

SCIENCE CHINA Chemistry
  • 批准号:
    21224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Science China Chemistry
  • 批准号:
    21024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
运用Linkage Chemistry合成新型聚合物缀合物和刷形共聚物
  • 批准号:
    20974058
  • 批准年份:
    2009
  • 资助金额:
    12.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2427215
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Middle Age Earth: ocean chemistry and evolution in the Boring Billion
中世纪地球:无聊十亿年的海洋化学和演化
  • 批准号:
    DP240101345
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
Nanoscale elucidation of prebiotic chemistry under early earth conditions
早期地球条件下生命起源化学的纳米级阐明
  • 批准号:
    23K17314
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
MRI: Track 3 Acquisition of Helium Recovery Equipment to Enhance Research and Training in Earth Sciences and Chemistry
MRI:第 3 轨道采购氦回收设备以加强地球科学和化学的研究和培训
  • 批准号:
    2319922
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Delving into an unexplored window of evolving earth ocean chemistry
深入研究地球海洋化学演化的一个未探索的窗口
  • 批准号:
    488984-2016
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
  • 批准号:
    2208744
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Exploring Organosodium Chemistry with Organocatalysis and Earth-Abundant Metals
利用有机催化和地球丰富的金属探索有机钠化学
  • 批准号:
    22K14719
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Expanding Reductive Chemistry and Oxidation State Diversity Using the Synthetic Chemistry of the Rare-Earth Metals
利用稀土金属的合成化学扩大还原化学和氧化态多样性
  • 批准号:
    2154255
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Determination of Rare Earth Element Speciation in Aquatic Systems with Varying Freshwater Chemistry to Better Predict Toxicity
测定具有不同淡水化学成分的水生系统中的稀土元素形态,以更好地预测毒性
  • 批准号:
    573446-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Promoting Engagement in Chemistry, Physics, and Earth Sciences
促进化学、物理和地球科学的参与
  • 批准号:
    2221462
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了