SGER: Global Minimum Determination by Underestimation: Application to Protein-Ligand Docking
SGER:低估全局最小确定:在蛋白质配体对接中的应用
基本信息
- 批准号:0513121
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-02-15 至 2006-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is proposed to develop two new algorithms for predicting the global minimum of energy surface functions in Rn arising in computational biology. Such functions are characterized by having a very large number of local minima, where the number typically grows exponentially with n. Energy surfaces of this type arise, for example, in protein-ligand docking in computational drug design. The location of the global minimum determines the most likely location of the docked ligand (drug) on the protein surface.This research is based on earlier results where it is assumed that the energy surface is basin-shaped, with many local minima. The energy surface was approximated by a convex quadratic function which underestimated a large number of local minima of the energy surface, and minimized the error in theL1 norm. It was shown that in many cases the unique minimum of this convex function was a good predictor of the global minimum of the energy surface.Intellectual Merit: We propose to build on this earlier work by developing two new and more efficient algorithms. The first will determine a quadratic underestimating function where the eigenvalues of the function Hessian satisfy specified lower and upper bounds. This includes the convex quadraticas a special case. In some important cases the energy surface, rather than being basin-shaped, contains a relatively small number of pronounced local minima, in addition to a large number relatively shallow local minima. The location of the pronounced local minima is not known, but one of them is the global minimum. The second proposed new algorithm will determine an underestimating function which consists of the sum of a small number of negative Gaussians. The location and shape of all Gaussians will be determined,as with the quadratic function, by minimizing the approximation error at a large number of local minima. The predicted global minimum point of the energy surface is then given by the location of that Gaussian with the minimum function value at its center.Impact: These two algorithms will be developed, implemented and tested on realistic computational models of protein-ligand docking energy surfaces, and made available, in accordance with University policy, to be used as one of the key components of a computer-aided drug design software package.
提出了两种新的算法来预测计算生物学中出现的Rn中能量表面函数的全局最小值。这种函数的特点是具有非常多的局部极小值,其数量通常随n呈指数增长。例如,在计算药物设计中的蛋白质配体对接中,就会出现这种类型的能量面。全局最小值的位置决定了停靠配体(药物)在蛋白质表面最可能的位置。这项研究是基于早期的结果,假设能量表面是盆状的,有许多局部极小值。用凸二次函数逼近能量面,低估了能量面大量的局部极小值,使theL1范数误差最小。结果表明,在许多情况下,该凸函数的唯一最小值可以很好地预测能量面的全局最小值。智力优势:我们建议在早期工作的基础上开发两种新的更有效的算法。第一个将确定一个二次低估函数,其中函数Hessian的特征值满足指定的下界和上界。这包括凸二次方程的一种特殊情况。在一些重要的情况下,能量表面不是盆状的,除了大量相对较浅的局部极小值外,还包含相对较少数量的明显的局部极小值。明显的局部极小值的位置尚不清楚,但其中一个是全局极小值。第二种提出的新算法将确定一个低估函数,该函数由少量负高斯函数的和组成。与二次函数一样,所有高斯函数的位置和形状将通过最小化大量局部最小值处的近似误差来确定。预测的能量表面的全局最小点由该高斯函数的最小值在其中心的位置给出。影响:这两种算法将在蛋白质-配体对接能量表面的实际计算模型上进行开发,实施和测试,并根据大学政策提供,作为计算机辅助药物设计软件包的关键组件之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J. Ben Rosen其他文献
Signal Identification Using a Least L1 Norm Algorithm
- DOI:
10.1023/a:1010094422372 - 发表时间:
2000-06-01 - 期刊:
- 影响因子:1.700
- 作者:
J. Ben Rosen;Haesun Park;John Glick - 通讯作者:
John Glick
Convex Quadratic Approximation
- DOI:
10.1023/b:coap.0000026883.13660.84 - 发表时间:
2004-07-01 - 期刊:
- 影响因子:2.000
- 作者:
J. Ben Rosen;Roummel F. Marcia - 通讯作者:
Roummel F. Marcia
Exponential Modeling with Unknown Model Order Using Structured Nonlinear Total Least Norm
- DOI:
10.1023/a:1022881907141 - 发表时间:
2003-07-01 - 期刊:
- 影响因子:2.100
- 作者:
Lei Zhang;Haesun Park;J. Ben Rosen - 通讯作者:
J. Ben Rosen
Multi-funnel optimization using Gaussian underestimation
- DOI:
10.1007/s10898-006-9110-4 - 发表时间:
2006-11-24 - 期刊:
- 影响因子:1.700
- 作者:
Roummel F. Marcia;Julie C. Mitchell;J. Ben Rosen - 通讯作者:
J. Ben Rosen
Accurate Solution to Overdetermined Linear Equations with Errors Using L1 Norm Minimization
- DOI:
10.1023/a:1026562601717 - 发表时间:
2000-12-01 - 期刊:
- 影响因子:2.000
- 作者:
J. Ben Rosen;Haesun Park;John Glick;Lei Zhang - 通讯作者:
Lei Zhang
J. Ben Rosen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J. Ben Rosen', 18)}}的其他基金
Global Optimization For Large Scale Problems Using Vector Processing (Computer Research)
使用矢量处理的大规模问题的全局优化(计算机研究)
- 批准号:
8405489 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Continuing Grant
Global Optimization Methods For Linearly Constrained Large-Scale Problems
线性约束大规模问题的全局优化方法
- 批准号:
8101214 - 财政年份:1981
- 资助金额:
-- - 项目类别:
Continuing Grant
Computational Methods For Nonlinear Constraint Problems
非线性约束问题的计算方法
- 批准号:
7623311 - 财政年份:1977
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
- 批准号:40536030
- 批准年份:2005
- 资助金额:120.0 万元
- 项目类别:重点项目
相似海外基金
CAREER: Balancing the global alkalinity cycle by improving models of river chemistry
职业:通过改进河流化学模型平衡全球碱度循环
- 批准号:
2338139 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: REU Site Mystic Aquarium: Plankton to Whales: Consequences of Global Change within Marine Ecosystems
合作研究:REU 站点神秘水族馆:浮游生物到鲸鱼:海洋生态系统内全球变化的后果
- 批准号:
2349354 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: Global Bioinformatics Education Summit 2024 — Energizing Communities to Power the Bioeconomy Workforce
会议:2024 年全球生物信息学教育峰会 — 激励社区为生物经济劳动力提供动力
- 批准号:
2421267 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Winds of Change: Exploring the Meteorological Drivers of Global Dust
变革之风:探索全球沙尘的气象驱动因素
- 批准号:
2333139 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341858 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341859 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
The global impact of high summer temperature on heatstroke mortality in the current climate scenario
当前气候情景下夏季高温对中暑死亡率的全球影响
- 批准号:
24K13527 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Implications of Global Economic Forces for Domestic Monetary Policy
全球经济力量对国内货币政策的影响
- 批准号:
DP240100970 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Global Road Damage Detection with privacy-preserved collaboration
通过保护隐私的协作进行全球道路损坏检测
- 批准号:
24K17366 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Mechanism and Stability of Global Imbalances
全球失衡的机制与稳定性
- 批准号:
23K22120 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)