Fundamental Algorithms in Singular

奇异的基本算法

基本信息

  • 批准号:
    171584313
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Priority Programmes
  • 财政年份:
    2010
  • 资助国家:
    德国
  • 起止时间:
    2009-12-31 至 2016-12-31
  • 项目状态:
    已结题

项目摘要

The overall goal of the DFG priority programme SPP 1489 is to push forward and combine computer algebra methods from different areas of mathematics, and to apply the resulting algorithms to central problems of theoretical and practical interest. To achieve this goal, the programme aims at creating a free and open source platform for linking computer algebra systems specializing in the areas covered by the programme. First and foremost, however, the individual systems have to be extended in view of the needs of the participating researchers. Our proposal aims at doing this for the system Singular which, as we believe, will be a key player in this context. Our goal is to improve the performance of the most fundamental algorithms for polynomial computations, but also to redesign some of the algorithms for applications in areas such as arithmetic geometry and non-commutative algebra. At the same time, we have a number of advanced computational tools in mind. These include the combination of computational methods in algebraic and convex geometry, with potential applications in toric and tropical geometry, and the computation of cohomology, with potential applications to Deligne–Lusztig varieties and monodromy. Another goal is to link symbolic and numerical algorithms, with particular emphasis on new algorithms for primary decomposition.
DFG优先方案SPP1489的总体目标是推动和结合不同数学领域的计算机代数方法,并将产生的算法应用于理论和实践感兴趣的中心问题。为实现这一目标,该方案旨在创建一个免费和开放源码的平台,用于连接该方案所涉领域的专门计算机代数系统。然而,首先也是最重要的是,鉴于参与研究人员的需要,必须扩展各个系统。我们的建议旨在为单一系统做到这一点,我们认为,该系统将在这方面发挥关键作用。我们的目标是提高最基本的多项式计算算法的性能,但也要重新设计一些算法,以应用于算术几何和非交换代数等领域。同时,我们还考虑了一些先进的计算工具。其中包括代数几何和凸几何中的计算方法的结合,以及上同调的计算,以及上同调的计算,这些方法在环面几何和热带几何中有潜在的应用,在Deligne-Lusztig簇和单列中有潜在的应用。另一个目标是将符号算法和数值算法联系起来,特别强调初级分解的新算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Wolfram Decker其他文献

Professor Dr. Wolfram Decker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Wolfram Decker', 18)}}的其他基金

Coordinator Project
项目协调员
  • 批准号:
    172383313
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Computeralgebramethoden in der algebraischen Geometrie
代数几何中的计算机代数方法
  • 批准号:
    5371854
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了