Homological Algebra Methods in Topology and Combinatorics
拓扑和组合学中的同调代数方法
基本信息
- 批准号:0513918
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Over the past two decades, low dimensional topology has seen a greatdeal of studies in two types of invariants: gauge theory type invariants in dimension four and combinatorial type invariants in dimension three. While both sides have deep connections with physics, they share little common techniques and have rather different flavors. This picture could change though, with recent work due to Khovanov and Ozsvath-Szabo.In 1999, Khovanov introduced a graded homology theory for knots,and proved that its graded Euler characteristic is the Jones polynomial.This has turned out to be a far reaching generalization of the Jones polynomial. Furthermore, there is strong evidence that Khovanov theory, along with the Ozsvath-Szabo theory, could bridge the connection between gauge theory type and combinatorial type invariants.Motivated by Khovanov's work, the PI, with his student Laure Helme-Guizon, has established a graded homology theory for graphs which yields the chromatic polynomial when taking Euler characteristic. The PI intends to further his investigation on these homology theories, both for knots and for graphs. Some of the specific problems are: understanding their geometric meanings, studying their behavior under various cut and paste operations, constructing homology theories for various other polynomials of knots and graphs, and investigating relations with other invariants in low dimensional topology.Low dimensional topology studies the shapes of three and four dimensional spaces. These dimensions are of particular interests to mankind because of the dimensions of our space and our space-time. A specific subfield in low dimensional topology is knot theory, which studies the knottedness in our three dimensional space. Knots are worthwhile to study not only because they are fundamental in 3-dimensional spatial structure, but also because of its connection to areas outside mathematics. For example, biochemists have discovered knotted DNA molecule (1980s) and knotted proteins (2004). It is also intimately related to the study of graph theory, an area interesting to mathematicians, computer scientists, and others. Over the past two decades, there have been a flourish of new invariants in low dimensional topology, boosted by ideas from gauge theory, quantum algebras, and mathematical physics. In particular, a new invariant for knots, developed by Khovanov using ideas in homological algebra, has sparked a great deal of interest recently. An analogous theory for graphs has since been developed by the PI and his student. This project aims to investigate these new invariants, with a particular emphasis on the homological algebra methods for knots and graphs.
在过去的二十年里,低维拓扑学对两类不变量进行了大量的研究:四维规范理论类型不变量和三维组合类型不变量。虽然双方都与物理学有着深厚的联系,但他们几乎没有共同的技术,而且有着截然不同的风格。然而,随着最近Khovanov和Ozsvath-Szbo的工作,这种情况可能会改变。1999年,Khovanov引入了关于纽结的分次同调理论,并证明了它的分次欧拉特征是Jones多项式。这被证明是Jones多项式的一个深远的推广。此外,有强有力的证据表明,Khovanov理论和Ozsvath-Szabo理论可以在规范理论类型和组合型不变量之间架起一座桥梁。在Khovanov工作的启发下,PI和他的学生Laure Helme-Guizon建立了图的分次同调理论,当采用Euler特征时,该图产生色多项式。PI打算进一步研究这些同调理论,包括纽结和图的同调理论。其中一些具体的问题是:理解它们的几何意义,研究它们在各种剪切和粘贴操作下的行为,构造其他各种结点和图的多项式的同调理论,以及研究低维拓扑中与其他不变量的关系。低维拓扑研究三维和四维空间的形状。由于我们的空间和时空的维度,这些维度对人类特别有意义。低维拓扑中的一个特殊子域是纽结理论,它研究我们的三维空间中的纽结。结点值得研究,不仅是因为它们是三维空间结构的基础,还因为它与数学以外的领域有联系。例如,生物化学家发现了打结的DNA分子(20世纪80年代)和打结的蛋白质(2004)。它还与图论的研究密切相关,这是数学家、计算机科学家和其他人感兴趣的一个领域。在过去的二十年里,在规范理论、量子代数和数学物理的思想的推动下,低维拓扑中的新不变量蓬勃发展。特别是,Khovanov利用同调代数的思想发展了一种新的纽结不变量,最近引起了人们的极大兴趣。自那以后,PI和他的学生发展了一种类似的图形理论。这个项目的目的是研究这些新的不变量,特别是结点和图的同调代数方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongwu Rong其他文献
Degree one maps of Seifert manifolds and a note on Seifert volume
Seifert 流形的一级图和 Seifert 体积的注释
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Yongwu Rong - 通讯作者:
Yongwu Rong
Orienting Ordered Scaffolds: Complexity and Algorithms
定向有序支架:复杂性和算法
- DOI:
10.1007/s42979-022-01198-7 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
S. Aganezov;P. Avdeyev;N. Alexeev;Yongwu Rong;M. Alekseyev - 通讯作者:
M. Alekseyev
Torsion in graph homology
图同调中的扭转
- DOI:
10.4064/fm190-0-5 - 发表时间:
2005 - 期刊:
- 影响因子:0.6
- 作者:
Laure Helme;J. Przytycki;Yongwu Rong - 通讯作者:
Yongwu Rong
Maps between Seifert fibered spaces of infinite π1
- DOI:
10.2140/pjm.1993.160.143 - 发表时间:
1993-09 - 期刊:
- 影响因子:0.6
- 作者:
Yongwu Rong - 通讯作者:
Yongwu Rong
Vassiliev invariants from satellites of link polynomials
链路多项式卫星的 Vassiliev 不变量
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Michael McDaniel;Yongwu Rong - 通讯作者:
Yongwu Rong
Yongwu Rong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongwu Rong', 18)}}的其他基金
Joint Undergraduate Mathematics and Physics Scholarships (JUMP)
本科生数学和物理联合奖学金(JUMP)
- 批准号:
1259858 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
Homotopical methods and cohomological supports in local algebra
局部代数中的同伦方法和上同调支持
- 批准号:
2302567 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Workshops in Spectral Methods in Algebra, Geometry, and Topology
代数、几何和拓扑谱方法研讨会
- 批准号:
2230159 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Nonstandard methods in algebra
代数中的非标准方法
- 批准号:
551931-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Nonstandard methods in algebra
代数中的非标准方法
- 批准号:
551898-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Flag Algebra Methods
合作研究:标记代数方法
- 批准号:
1855653 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Flag Algebra Methods
合作研究:标记代数方法
- 批准号:
1855622 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Implicitization, Residual Intersections, and Differential Methods in Commutative Algebra
交换代数中的隐式化、残差交点和微分方法
- 批准号:
1802383 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Computer algebra based methods for hypergeometric functions in some variables and its applications
基于计算机代数的某些变量超几何函数的方法及其应用
- 批准号:
17K05292 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological methods in arithmetic and algebra
算术和代数中的拓扑方法
- 批准号:
1712470 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant