Implicitization, Residual Intersections, and Differential Methods in Commutative Algebra

交换代数中的隐式化、残差交点和微分方法

基本信息

  • 批准号:
    1802383
  • 负责人:
  • 金额:
    $ 32.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

This award funds research in Commutative Algebra, the study of systems of polynomial equations in several unknowns. To this end, one considers the collection of all solutions of a system of equations as a geometric object and investigates the functions defined on this object. Reversing the perspective leads to the implicitization problem, which the investigator plans to work on: Given a geometric object, such as a curve or a surface, one wishes to construct a system of polynomial equations that has the geometric object as its solution set. Once the system of polynomial equations is known, it becomes much easier, for instance, to decide whether a specific point lies on the surface or whether the surface is smooth at one of its points. The implicitization problem is difficult and requires advanced techniques from pure mathematics, but its solution even in particular cases has numerous applications, for instance in computer aided design, robotics, and other areas of engineering. This project addresses several topics in Commutative Algebra that have close connections with Algebraic and Analytic Geometry and with Elimination Theory. They include the implicitization problem for Rees algebras and rational maps, equisingularity theory, the Poincare problem for plane foliations, and residual intersection theory. Determining the implicit equations of graphs and images of rational maps is a classical, but open problem in elimination theory, which amounts to finding defining ideals of Rees algebras. Previously, the PI and his collaborators solved this problem for Rees algebras of codimension three Gorenstein ideals, under the additional assumption that the entries of a syzygy matrix of the ideal generate a complete intersection. Now the PI intends to remove this crucial hypothesis. The PI also plans to investigate Rees algebras of more general ideals, with the aim to obtain at least qualitative statements and bounds for the implicit equations. A goal in equisingularity theory is to devise fiberwise numerical criteria for when a family of analytic spaces is topologically trivial. An important intermediate step are numerical characterizations of integral dependence of modules. The PI intends to prove such a characterization using a notion of multiplicity that is inspired by intersection theory. Poincare had asked how to decide whether a singular algebraic foliation of the complex plane has an algebraic curve as a leaf. In more recent times, this question has often been treated as a problem about relating invariants of a vector field to invariants of curves or varieties that are left invariant by the vector field. The PI will investigate this problem, using his expertise from prior work on algebraic differentials and Castelnuovo-Mumford regularity. The notion of residual intersection, a generalization of linkage or liaison, is ubiquitous and appears naturally in intersection theory and in the study of Rees algebras, for instance. Of central importance are the Cohen-Macaulayness and duality properties of residual intersections. Based on partial results and experimental evidence, David Eisenbud and the PI have observed that, unexpectedly, many residual intersections, even when they fail to be Cohen-Macaulay, admit maximal Cohen-Macaulay modules of rank one that are self-dual. The PI and his collaborators intend to give a proof of this unusual phenomenon.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项资助交换代数的研究,即研究几个未知数的多项式方程组。为此,我们将一个方程组的所有解的集合视为一个几何对象,并研究在该对象上定义的函数。相反的观点导致了隐含化问题,这是研究者计划研究的问题:给定一个几何对象,如一条曲线或曲面,人们希望构造一个以该几何对象作为其解集的多项式方程组。一旦知道了多项式方程组,就变得容易得多,例如,确定一个特定点是否位于曲面上,或者曲面在其某个点处是否光滑。隐含问题是困难的,需要纯数学的高级技术,但它的解决方案即使在特定情况下也有许多应用,例如在计算机辅助设计、机器人学和其他工程领域。这个项目涉及交换代数中与代数、解析几何和消元理论有密切联系的几个主题。它们包括Rees代数和有理映射的隐含化问题、均衡性理论、平面层的Poincare问题和剩余交理论。确定有理映射图和映象的隐方程是消去论中一个经典而又开放的问题,其实质就是寻找Rees代数的定义理想。以前,PI和他的合作者解决了余维三个Gorenstein理想的Rees代数的这个问题,另外假设理想的合矩阵的项生成完全交。现在,PI打算去掉这一关键假设。PI还计划研究更一般理想的Rees代数,目的是至少得到隐式方程的定性陈述和界。等价性理论的一个目标是为一族解析空间何时是拓扑平凡的设计纤维状的数值准则。一个重要的中间步骤是模的积分依赖性的数值刻画。PI打算使用受交集理论启发的多重性概念来证明这样的特征。庞加莱曾问过,如何确定复平面的奇异代数叶层是否具有作为叶的代数曲线。最近,这个问题经常被看作是一个关于矢量场的不变量与矢量场留下的不变量的曲线或簇的不变量之间的关系的问题。PI将利用他之前在代数微分和Castelnuovo-Mumford正则性方面的专业知识来调查这个问题。剩余交的概念是链接或联络的推广,它是普遍存在的,并自然地出现在交理论和Rees代数的研究中,例如。最重要的是剩余交的Cohen-Macaulay性和对偶性质。基于部分结果和实验证据,David Eisenbud和PI已经观察到,出乎意料的是,许多剩余交,即使它们不是Cohen-Macaulay,也允许一阶的极大Cohen-Macaulay模是自对偶的。PI和他的合作者打算证明这一不寻常的现象。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Duality and socle generators for residual intersections
残差交集的对偶性和 socle 生成器
Multiplicity sequence and integral dependence
多重序列和积分依赖性
  • DOI:
    10.1007/s00208-020-02059-5
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Polini, Claudia;Trung, Ngo Viet;Ulrich, Bernd;Validashti, Javid
  • 通讯作者:
    Validashti, Javid
Degree bounds for local cohomology
局部上同调的度界
Residual intersections and linear powers
剩余交点和线性幂
  • DOI:
    10.1090/btran/127
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eisenbud, David;Huneke, Craig;Ulrich, Bernd
  • 通讯作者:
    Ulrich, Bernd
The mathematical contributions of Craig Huneke
Craig Huneke 的数学贡献
  • DOI:
    10.1016/j.jalgebra.2020.05.009
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Hochster, Melvin;Ulrich, Bernd
  • 通讯作者:
    Ulrich, Bernd
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bernd Ulrich其他文献

Order ideals and a generalized Krull height theorem
  • DOI:
    10.1007/s00208-004-0513-6
  • 发表时间:
    2004-08-24
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    David Eisenbud;Craig Huneke;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich
Tangent star cones.
相切星锥。
The bi-graded structure of symmetric algebras with applications to Rees rings
  • DOI:
    10.1016/j.jalgebra.2016.08.014
  • 发表时间:
    2017-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew Kustin;Claudia Polini;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich
Socle degrees, resolutions, and Frobenius powers
  • DOI:
    10.1016/j.jalgebra.2009.04.014
  • 发表时间:
    2009-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew R. Kustin;Bernd Ulrich
  • 通讯作者:
    Bernd Ulrich
The equations of Rees algebras of ideals with linear presentation
  • DOI:
    10.1007/bf02572392
  • 发表时间:
    1993-09-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Bernd Ulrich;Wolmer V. Vasconcelos
  • 通讯作者:
    Wolmer V. Vasconcelos

Bernd Ulrich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bernd Ulrich', 18)}}的其他基金

Conference: Workshop in Commutative Algebra
会议:交换代数研讨会
  • 批准号:
    2317351
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Standard Grant
Collaborative Research: Differential Methods, Implicitization, and Multiplicities with a View Towards Equisingularity Theory
协作研究:以等奇性理论为视角的微分方法、隐式化和多重性
  • 批准号:
    2201149
  • 财政年份:
    2022
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Standard Grant
Algebra and Geometry Meetings in the Midwest
中西部的代数和几何会议
  • 批准号:
    1446115
  • 财政年份:
    2015
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Continuing Grant
Problems in Commutative Algebra: Free Resolutions, Multiplicities, and Blowup Rings
交换代数问题:自由解析、重数和爆炸环
  • 批准号:
    1503605
  • 财政年份:
    2015
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Standard Grant
Rees algebras and singularities
里斯代数和奇点
  • 批准号:
    1205002
  • 财政年份:
    2012
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Continuing Grant
Commutative Algebra of Alternating Polynomials
交替多项式的交换代数
  • 批准号:
    0901367
  • 财政年份:
    2009
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Standard Grant
Multiplicity theory and related topics in commutative algebra
交换代数中的多重性理论及相关主题
  • 批准号:
    0901613
  • 财政年份:
    2009
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Continuing Grant
PASI: Commutative Algebra and its Connections to Geometry; Olinda, Brazil, Summer 2009
PASI:交换代数及其与几何的联系;
  • 批准号:
    0819049
  • 财政年份:
    2009
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Standard Grant
Special Algebra Meetings in the Midwest
中西部特别代数会议
  • 批准号:
    0753127
  • 财政年份:
    2008
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Continuing Grant
Cores, regularity and principal ideal theorems
核心、正则性和主要理想定理
  • 批准号:
    0501011
  • 财政年份:
    2005
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Continuing Grant

相似海外基金

Development of BioMara’s sustainable biorefinery for biomanufacturing new products from residual ‘waste’ streams and sustainability improvements
开发 BioMara 的可持续生物精炼厂,利用残余“废物”流生物制造新产品并提高可持续性
  • 批准号:
    10068120
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Collaborative R&D
Developing machine learning based approaches to weld residual stress problems
开发基于机器学习的方法来解决焊接残余应力问题
  • 批准号:
    2894296
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Studentship
STTR Phase II: Nanomaterial-based Residual Active Disinfectant for Decreasing Surface Acquired Infections
STTR 第二阶段:基于纳米材料的残留活性消毒剂,用于减少表面获得性感染
  • 批准号:
    2208717
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Cooperative Agreement
Topology optimization of joints making use of residual stress in metal 3D printing
利用金属 3D 打印中的残余应力进行接头拓扑优化
  • 批准号:
    23K17787
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Preclinical Validation of Personalized Molecular Assays for Measurable Residual Disease Monitoring in Pediatric AML
用于儿科 AML 可测量残留疾病监测的个性化分子检测的临床前验证
  • 批准号:
    10643568
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
Understanding metabolic and vascular vulnerabilities of residual disease in triple negative breast cancer to inform on treatment strategies
了解三阴性乳腺癌残留疾病的代谢和血管脆弱性,为治疗策略提供信息
  • 批准号:
    10744480
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
Collaborative Research: Bayesian Residual Learning and Random Recursive Partitioning Methods for Gaussian Process Modeling
合作研究:高斯过程建模的贝叶斯残差学习和随机递归划分方法
  • 批准号:
    2348163
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Standard Grant
Characterizing residual stress on pipework weld repairs using machine learning
使用机器学习表征管道焊接修复的残余应力
  • 批准号:
    2891480
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Studentship
L-PBF process control to reduce hot-cracking and residual stress
L-PBF 工艺控制可减少热裂和残余应力
  • 批准号:
    2898429
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Studentship
Transformation modeling of assistive action for exploiting patient's residual motor function
开发患者残余运动功能的辅助动作转换模型
  • 批准号:
    22KJ2702
  • 财政年份:
    2023
  • 资助金额:
    $ 32.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了