Multi-Scale Simulation of Rare-Event Dynamics in Assembly and Catalysis at Surfaces
表面组装和催化中罕见事件动力学的多尺度模拟
基本信息
- 批准号:0514336
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-01 至 2009-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL EXPLANATION:The Division of Materials Research and the Chemistry Division jointly fund this award. It supports computational research and education aimed at addressing the challenging problem of using simulations of structural evolution to access long-time and large-length scales while accurately retaining atomic detail. Molecular-dynamics (MD) simulations can provide accurate details at the atomic scale. However, MD is not practical for simulating times or distances much beyond the nanometer scale. In many materials, dynamical evolution occurs through a series of "rare events", in which the system spends a long-time period in one potential-energy minimum before escaping and moving on to another. The PI aims to develop methods to advance the current capabilities for simulating rare-event dynamics. Specifically methods will be developed for parallel kinetic Monte Carlo (KMC) simulation, combination of lattice-based KMC simulations with rate equations, and accelerated MD simulation of thermal desorption. These methods will be applied to describe pattern formation in multi-layer, metal thin-film growth and the temperature-programmed desorption (TPD) of nalkane molecules from solid surfaces. Planned innovations to KMC simulations will allow their quantitative application to multi-scale problems, where length and time scales range from atomic scales to macroscopic scales. The accuracy and efficiency of these methods will be confirmed and assessed. The KMC studies will elucidate how pattern formation in metal thin-film epitaxy on fcc(110) surfaces depends on the surface temperature and the deposition rate. It is of particular interest in these studies to determine how experimentally observed nanostructures can self-organize and how the self-organization can be controlled.The accelerated MD studies will be the first studies to simulate an entire TPD experiment in real space with MD. The simulations will be applied to resolve experimental controversy surrounding interpretation of n-alkane desorption. Further, the methodology that will be introduced could enable future simulations of large and complex catalytic systems whose net rate behavior reflects many different rate processes.NON-TECHNICAL EXPLANATION:The Division of Materials Research and the Chemistry Division jointly fund this award. It supports computational research and education aimed at addressing the challenging problem of using simulations of structural evolution to capture essential physical and chemical processes on long-time and large-length scales while accurately retaining detail at the atomic scale. Molecular-dynamics simulations can provide accurate details at the atomic scale, but it is not practical for simulating times or distances much beyond the nanometer scale. In many materials, dynamical evolution occurs through a series of "rare events." The PI aims to develop computational algorithms and tools to enable meaningful simulation that can span from atomic to macroscopic length and time scales. This is a difficult and important problem in computational materials research and chemisty. Effective solutions of this problem can enable the interpretation and understanding of a wide range of experiments and contribute to the discovery of new materials and phenomena. The PI will focus on applications to the growth of films, patterned films, and nanostructures on the surfaces of materials, and the desorption of chainlike molecules from graphite and metal surfaces. The algorithms and computational tools that result from this work may find applications across other areas of chemistry, materials research, and biological physics.
技术说明:该奖项由材料研究部和化学部共同资助。它支持计算研究和教育,旨在解决使用结构演化模拟来访问长时间和大长度尺度的具有挑战性的问题,同时准确地保留原子细节。分子动力学(MD)模拟可以提供原子尺度上的精确细节。然而,MD在模拟时间或距离上并不实用,远远超出纳米尺度。在许多材料中,动态进化是通过一系列“罕见事件”发生的,在这些事件中,系统在逃逸并转移到另一个势能最小值之前花费了很长一段时间。PI的目标是开发方法来提高当前模拟罕见事件动力学的能力。具体而言,将开发平行动力学蒙特卡罗(KMC)模拟方法,基于晶格的KMC模拟与速率方程的结合,以及热脱附的加速MD模拟。这些方法将被应用于描述多层金属薄膜生长中的模式形成和烷烃分子从固体表面的温度程序化解吸(TPD)。计划中的KMC模拟创新将允许其定量应用于多尺度问题,其中长度和时间尺度范围从原子尺度到宏观尺度。这些方法的准确性和效率将被证实和评估。KMC研究将阐明fcc(110)表面金属薄膜外延的模式形成如何取决于表面温度和沉积速率。在这些研究中,确定实验观察到的纳米结构如何自组织以及如何控制自组织是特别有趣的。加速MD研究将是第一个在真实空间中使用MD模拟整个TPD实验的研究。模拟结果将用于解决围绕正构烷烃解吸解释的实验争议。此外,将引入的方法可以使将来模拟大型和复杂的催化系统,其净速率行为反映许多不同的速率过程。非技术说明:该奖项由材料研究部和化学部共同资助。它支持计算研究和教育,旨在解决使用结构演化模拟来捕获长时间和大长度尺度上的基本物理和化学过程的挑战性问题,同时准确地保留原子尺度上的细节。分子动力学模拟可以在原子尺度上提供精确的细节,但对于模拟时间或距离远远超过纳米尺度是不切实际的。在许多物质中,动态进化是通过一系列“罕见事件”发生的。PI旨在开发计算算法和工具,以实现从原子到宏观长度和时间尺度的有意义的模拟。这是计算材料研究和化学中的一个困难而又重要的问题。这个问题的有效解决可以使解释和理解广泛的实验,并有助于发现新的材料和现象。PI将专注于薄膜、图案薄膜和材料表面纳米结构的生长,以及石墨和金属表面链状分子的解吸。从这项工作中产生的算法和计算工具可能会在化学、材料研究和生物物理学的其他领域找到应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristen Fichthorn其他文献
A step up to self-assembly
迈向自组装的一步
- DOI:
10.1038/429617a - 发表时间:
2004-06-10 - 期刊:
- 影响因子:48.500
- 作者:
Kristen Fichthorn;Matthias Scheffler - 通讯作者:
Matthias Scheffler
A step up to self-assembly
迈向自组装的一步
- DOI:
10.1038/429617a - 发表时间:
2004-06-10 - 期刊:
- 影响因子:48.500
- 作者:
Kristen Fichthorn;Matthias Scheffler - 通讯作者:
Matthias Scheffler
Kristen Fichthorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristen Fichthorn', 18)}}的其他基金
2023 Crystal Growth and Assembly Gordon Research Conference and Gordon Research Seminar
2023晶体生长与组装戈登研究会议暨戈登研究研讨会
- 批准号:
2326807 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: NSCI Framework: Software: SCALE-MS - Scalable Adaptive Large Ensembles of Molecular Simulations
合作研究:NSCI 框架:软件:SCALE-MS - 可扩展自适应大型分子模拟集成
- 批准号:
1835607 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
NRT-DESE: Computational Materials Education and Training - Bridging Methods and Applications (COMET)
NRT-DESE:计算材料教育和培训 - 桥接方法和应用(COMET)
- 批准号:
1449785 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
Accelerated ab initio Molecular Dynamics of III/V Semiconductor Thin-Film Epitaxy
III/V 半导体薄膜外延的加速从头分子动力学
- 批准号:
1006452 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Continuing Grant
Multi-Scale Simulation of Droplets on Solid Surfaces: Superhydrophobicity and Superspreading
固体表面上液滴的多尺度模拟:超疏水性和超级扩散
- 批准号:
0730987 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Standard Grant
Accurate and Efficient Atomic-Scale Simulation of Structural Evolution in Materials: Metal Thin-Film Growth
材料结构演化的准确高效的原子尺度模拟:金属薄膜生长
- 批准号:
9617122 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing Grant
ENGINEERING RESEARCH EQUIPMENT: Computer Workstation
工程研究设备: 计算机工作站
- 批准号:
9411825 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Standard Grant
Presidential Young Investigators Award: Monte Carlo Simulation of Surface Kinetics
总统青年研究员奖:表面动力学蒙特卡罗模拟
- 批准号:
9058013 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Numerical Simulation of Hypersonic Turbulent Flow by Spatiotemporal Multi-Scale Reduced Order Model
时空多尺度降阶模型高超声速湍流数值模拟
- 批准号:
23KJ0127 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of multi-scale simulation tools for laser-plasma interactions and their validation against fusion experiments
激光-等离子体相互作用的多尺度模拟工具的开发及其对聚变实验的验证
- 批准号:
RGPIN-2018-05787 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
NSERC/EDF/Hydro-Québec/Opal-RT/RTE IRC in multi time-frame simulation of transients for large scale power systems
NSERC/EDF/Hydro-Quäbec/Opal-RT/RTE IRC 用于大型电力系统瞬态的多时间帧仿真
- 批准号:
476309-2019 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Industrial Research Chairs
Linking Climate Change to Urban Water Infrastructure Design and Management: An Integrated Conceptual Modeling Framework for Multi-scale Simulation of Extreme Rainfall Processes
将气候变化与城市水基础设施设计和管理联系起来:极端降雨过程多尺度模拟的综合概念模型框架
- 批准号:
RGPIN-2022-03756 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
A Transient, Multi-Scale, Open-Source Software for the Numerical Simulation of Electrochemical Energy Systems
用于电化学能源系统数值模拟的瞬态、多尺度、开源软件
- 批准号:
543579-2019 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants
Reducing risks and costs of in-stream tidal energy using multi-scale computational fluid dynamic simulation
使用多尺度计算流体动力学模拟降低河内潮汐能的风险和成本
- 批准号:
RGPIN-2020-04704 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
EMPHASIS-GO: Bringing Emphasis to Operation: European Infrastructure for Multi-Scale Plant Phenomics and Simulation for Food Security in a Changing Climate
EMPHASIS-GO:强调操作:气候变化下粮食安全多尺度植物表型组学和模拟的欧洲基础设施
- 批准号:
10065248 - 财政年份:2022
- 资助金额:
-- - 项目类别:
EU-Funded
Large-scale multi-phase flow simulation for foam flooding method in porous media
多孔介质泡沫驱大规模多相流模拟
- 批准号:
22K14178 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Elements: SciMem: Enabling High Performance Multi-Scale Simulation on Big Memory Platforms
协作研究:要素:SciMem:在大内存平台上实现高性能多尺度仿真
- 批准号:
2103967 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
A Transient, Multi-Scale, Open-Source Software for the Numerical Simulation of Electrochemical Energy Systems
用于电化学能源系统数值模拟的瞬态、多尺度、开源软件
- 批准号:
543579-2019 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Collaborative Research and Development Grants