Accelerated ab initio Molecular Dynamics of III/V Semiconductor Thin-Film Epitaxy
III/V 半导体薄膜外延的加速从头分子动力学
基本信息
- 批准号:1006452
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-09-15 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARYThis award supports computational and theoretical research and education on a continuing challenge in materials simulation: Conducting simulations of structural evolution over long time and length scales, while retaining accurate detail at the atomic level. The PI intends to advance capabilities of rare-event simulations to enable simulations of a wide range of condensed-matter systems. The PI aims to develop methods to advance the current capabilities of accelerated molecular dynamics. An accelerated molecular dynamics protocol will be developed for both classical and ab initio simulations based on the Bond-Boost method. In this algorithm, parallel computing is exploited to parameterize the Bond-Boost potential on the fly, as well as to combine this hyperdynamics-based algorithm with parallel replica dynamics for large acceleration with efficient parallel scaling. To extrapolate accelerated molecular dynamics simulations to larger length and time scales, they will be integrated into kinetic Monte Carlo models. The combination of accelerated molecular dynamics with kinetic Monte Carlo will allow the quantitative application of this technique to multi-scale problems, where the length and time scales range from atomic scales to mesoscopic scales.The Adaptive Bond-Boost method will be applied in first-principles-based simulations of thin-film growth on GaAs(001) -- both homoepitaxy and InAs heteroepitaxy will be studied. Thin-film growth in these systems is technologically significant; there are applications in electronic, optoelectronic, and spintronic devices. From a fundamental perspective, recent experimental work has shown that GaAs(001) substrates can transform and play an active role in diffusion and the morphologies that form during homoepitaxy. This system breaks the conventional paradigm that the substrate is a static template. The way that adatom diffusion, island nucleation, and multi-layer growth occur in such a dynamical environment may be considerably different than that envisioned in the conventional picture of thin-film growth. The PI aims to resolve these phenomena and their role in thin-film growth in this compound semiconductor system. For studies of InAs heteroepitaxy on GaAs(001), existing semi-empirical potentials will be tested against experiment and first-principles density-functional theory for an extensive list of properties. A combination of classical and ab initio accelerated molecular dynamics simulations will be used to probe deposition and diffusion on an InAs wetting layer on GaAs(001). InAs forms self-assembled quantum dots via the Stranski-Krastanov growth mode on GaAs substrates and the proposed studies will be the first real-space, atomic scale studies to resolve the nucleation of quantum dots from the wetting layer.This project includes graduate student and postdoctoral training and involvement of undergraduate students. Aspects of the research will be included in graduate and undergraduate coursework. The state of the art in understanding multi-scale modeling will be advanced through organization of symposia at conferences, as well as international workshops.NON-TECHNICAL SUMMARYThis award supports computational and theoretical research and education on a continuing challenge in materials simulation: Using the newest theoretical and algorithmic developments, which can describe a small number of atoms for only a very short time, on the order of one millionth of one millionth of a second, to describe how materials with many atoms evolve over usual time scales of seconds to hours during their fabrication. The PI aims to advance capabilities of accelerated molecular dynamics. In ordinary molecular dynamics, the motion of each atom is simulated on a computer. The computer steps through very small time increments that are set by the need to include processes that occur from the interaction of individual atoms. At this rate, simulations are too slow to reach the, relatively speaking, long times needed to describe, for example the growth of a thin film of one material on the surface of another. Accelerated molecular dynamics applies ideas from statistical mechanics to enable computer simulations to access longer time scales and to include physical and chemical processes that happen infrequently but play an important role in determining, for example, the structure of a thin film. The PI will use new simulation methods that are developed to simulate the growth of thin-films of materials on the surfaces of the semiconductor material gallium arsenide. This will serve as model for understanding thin film growth on other materials, many being important for applications in electronic, optoelectronic, and spintronic devices, such as lasers, solar cells, and computers of the future. Technological bottle-necks arise from a lack of understanding of how the structure of thin films evolves as they are grown by molecular-beam epitaxy, in which atoms are deposited onto the surface from a vapor. By simulating this materials fabrication technique, the PI aims to develop new insight into how films of materials can be fabricated more effectively for applications. Aspects of the research will be included in graduate and undergraduate coursework and the state of the art in understanding multi-scale modeling will be advanced through organization of symposia at conferences, as well as international workshops. Students will be trained in advanced methods for simulating materials and materials growth.
技术摘要该奖项支持针对材料模拟中持续挑战的计算和理论研究和教育:在长时间和长度尺度上进行结构演化模拟,同时保留原子级别的准确细节。 该 PI 打算提高罕见事件模拟的能力,以实现对各种凝聚态物质系统的模拟。 该 PI 旨在开发方法来提高当前加速分子动力学的能力。 将针对基于 Bond-Boost 方法的经典模拟和从头算模拟开发加速分子动力学协议。 在该算法中,利用并行计算来动态参数化 Bond-Boost 势,并将这种基于超动力学的算法与并行复制动力学相结合,以实现高效并行缩放的大加速。 为了将加速分子动力学模拟推断到更大的长度和时间尺度,它们将被集成到动力学蒙特卡罗模型中。 加速分子动力学与动力学蒙特卡罗的结合将允许该技术定量应用到多尺度问题,其中长度和时间尺度范围从原子尺度到介观尺度。自适应 Bond-Boost 方法将应用于基于第一原理的 GaAs(001) 薄膜生长模拟——同质外延和 InAs 异质外延都将 被研究。 这些系统中的薄膜生长具有重要的技术意义。在电子、光电子和自旋电子器件中都有应用。从基本角度来看,最近的实验工作表明,GaAs(001) 衬底可以发生转变,并在同质外延过程中形成的扩散和形态中发挥积极作用。 该系统打破了基材是静态模板的传统范例。 在这种动态环境中,吸附原子扩散、岛形核形成和多层生长发生的方式可能与传统薄膜生长情况中设想的方式有很大不同。 PI 旨在解决这些现象及其在化合物半导体系统薄膜生长中的作用。 为了研究 GaAs(001) 上的 InAs 异质外延,将根据实验和第一性原理密度泛函理论来测试现有的半经验势,以获得广泛的特性。 经典和从头算加速分子动力学模拟的结合将用于探测 GaAs(001) 上 InAs 润湿层的沉积和扩散。 InAs 通过在 GaAs 衬底上的 Stranski-Krastanov 生长模式形成自组装量子点,拟议的研究将是第一个真实空间、原子尺度的研究,以解决润湿层中量子点的成核问题。该项目包括研究生和博士后培训以及本科生的参与。研究的各个方面将包含在研究生和本科生课程中。通过在会议和国际研讨会上组织研讨会,将促进对多尺度建模的理解。非技术性摘要该奖项支持针对材料模拟中持续挑战的计算和理论研究和教育:使用最新的理论和算法发展,可以在非常短的时间内(大约百万分之一秒)描述少量原子, 描述具有许多原子的材料在制造过程中如何在通常的几秒到几小时的时间尺度内演化。 该 PI 旨在提高加速分子动力学的能力。在普通分子动力学中,每个原子的运动都是在计算机上模拟的。计算机逐步执行非常小的时间增量,这些时间增量是根据需要设置的,包括单个原子相互作用发生的过程。以这种速度,模拟速度太慢,相对而言,无法达到描述所需的较长时间,例如一种材料的薄膜在另一种材料表面上的生长。加速分子动力学应用统计力学的思想,使计算机模拟能够访问更长的时间尺度,并包括不经常发生但在确定薄膜结构等方面发挥重要作用的物理和化学过程。 PI 将使用新的模拟方法来模拟半导体材料砷化镓表面材料薄膜的生长。这将成为理解其他材料上薄膜生长的模型,其中许多材料对于电子、光电子和自旋电子器件(例如未来的激光器、太阳能电池和计算机)的应用非常重要。 技术瓶颈源于对薄膜结构在分子束外延生长过程中如何演变的了解,其中原子从蒸气沉积到表面。 通过模拟这种材料制造技术,PI 旨在开发新的见解,了解如何更有效地制造材料薄膜以供应用。 研究的各个方面将包含在研究生和本科生课程中,并且将通过在会议上组织专题讨论会以及国际研讨会来推进理解多尺度建模的最新技术。学生将接受模拟材料和材料生长的先进方法的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristen Fichthorn其他文献
A step up to self-assembly
迈向自组装的一步
- DOI:
10.1038/429617a - 发表时间:
2004-06-10 - 期刊:
- 影响因子:48.500
- 作者:
Kristen Fichthorn;Matthias Scheffler - 通讯作者:
Matthias Scheffler
A step up to self-assembly
迈向自组装的一步
- DOI:
10.1038/429617a - 发表时间:
2004-06-10 - 期刊:
- 影响因子:48.500
- 作者:
Kristen Fichthorn;Matthias Scheffler - 通讯作者:
Matthias Scheffler
Kristen Fichthorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristen Fichthorn', 18)}}的其他基金
2023 Crystal Growth and Assembly Gordon Research Conference and Gordon Research Seminar
2023晶体生长与组装戈登研究会议暨戈登研究研讨会
- 批准号:
2326807 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Collaborative Research: NSCI Framework: Software: SCALE-MS - Scalable Adaptive Large Ensembles of Molecular Simulations
合作研究:NSCI 框架:软件:SCALE-MS - 可扩展自适应大型分子模拟集成
- 批准号:
1835607 - 财政年份:2019
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
NRT-DESE: Computational Materials Education and Training - Bridging Methods and Applications (COMET)
NRT-DESE:计算材料教育和培训 - 桥接方法和应用(COMET)
- 批准号:
1449785 - 财政年份:2015
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Multi-Scale Simulation of Droplets on Solid Surfaces: Superhydrophobicity and Superspreading
固体表面上液滴的多尺度模拟:超疏水性和超级扩散
- 批准号:
0730987 - 财政年份:2007
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Multi-Scale Simulation of Rare-Event Dynamics in Assembly and Catalysis at Surfaces
表面组装和催化中罕见事件动力学的多尺度模拟
- 批准号:
0514336 - 财政年份:2005
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Accurate and Efficient Atomic-Scale Simulation of Structural Evolution in Materials: Metal Thin-Film Growth
材料结构演化的准确高效的原子尺度模拟:金属薄膜生长
- 批准号:
9617122 - 财政年份:1997
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
ENGINEERING RESEARCH EQUIPMENT: Computer Workstation
工程研究设备: 计算机工作站
- 批准号:
9411825 - 财政年份:1994
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Presidential Young Investigators Award: Monte Carlo Simulation of Surface Kinetics
总统青年研究员奖:表面动力学蒙特卡罗模拟
- 批准号:
9058013 - 财政年份:1990
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
相似国自然基金
高雄激素抑制Hsp90ab1改善原发性痛经的分子机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
体外培养胚胎 Hsp90ab1基因异常表达影响子代端粒长度的机制研究
- 批准号:24ZR1471400
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
“中气枢轴”理论下益气化痰开窍法抑制AB-Tau交互作用减轻AD突触衰竭的新机制:靶向线粒体轴突运输障碍
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
基于溶酶体逃逸增效构建GLUT1介导的级联靶向脂质体及其抗颅内
MDR-AB菌胞内感染研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
3’tRNA衍生片段tRF-Val靶向EEF1A1招募乙酰转移酶KAT5和HSP90AB1复合物促进胃癌进展的机制
- 批准号:82302959
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
构建颅内未破裂动脉瘤小鼠模型评估IL2/IL2Ab稳定动脉瘤的作用
- 批准号:LTGD23C040010
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于抗GD2单抗F(ab’)2片段的神经母细胞瘤放射免疫诊疗一体化及肿瘤免疫微环境激活机制研究
- 批准号:82302235
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
m6A甲基化阅读器IGF2BP2通过结直肠癌糖酵解调控CD8+T淋巴细胞浸润及抗PD-1/PD-L1 Ab治疗的机制研究
- 批准号:2023J01089
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
用于转基因作物Cry1Ab蛋白高通量检测的光电化学-比色双模传感研究
- 批准号:22374061
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
抗菌氮掺杂碳量子点(ab-nCQDs合成及其抗菌机制的研究
- 批准号:2023J01160
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Nuclear deformation and symmetry breaking from an ab-initio perspective
从头算角度看核变形和对称性破缺
- 批准号:
MR/Y034007/1 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Fellowship
High-Valent Iron-Oxo Species for Activation of Strong CH Bonds: New Designs with Novel Ab Initio Methods and Machine Learning
用于激活强CH键的高价铁氧物种:采用新颖的从头算方法和机器学习的新设计
- 批准号:
24K17694 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
アンモニア熱・プラズマ支援分解のためのab initio表面反応モデルの構築
氨热和等离子体辅助分解的从头算表面反应模型的构建
- 批准号:
24KJ0711 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for JSPS Fellows
非従来型超伝導に対する第一原理手法の開発
非常规超导第一性原理方法的发展
- 批准号:
22KJ0958 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
合作研究:掺杂共价键超导体从头开始工程
- 批准号:
2320073 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Quantum Vibrational Spectra of Hydrogen in Materials by Ab Initio Semiclassical Molecular Dynamics
利用从头算半经典分子动力学研究材料中氢的量子振动光谱
- 批准号:
23K04670 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Ab Initio Engineering of Doped-Covalent-Bond Superconductors
合作研究:掺杂共价键超导体从头开始工程
- 批准号:
2320074 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
CDS&E: Elucidating the Structure and Catalytic Activity of Nanoparticles Under Catalytic Conditions Using Ab Initio Machine Learning Force Fields
CDS
- 批准号:
2245120 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Simultaneous optimization of crystal and magnetic structures: Applications to topological magnetic electrides
晶体和磁性结构的同时优化:在拓扑磁性电子化合物中的应用
- 批准号:
22KJ1151 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Study on the pressure-dependent luminescence, non-linear optics, and vibrational properties of novel lanthanide complexes
新型稀土配合物的压力依赖性发光、非线性光学和振动特性研究
- 批准号:
23K19238 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




