Localized Algorithm Design and Analysis
本地化算法设计与分析
基本信息
- 批准号:0514985
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2008-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sensor network is a new computing paradigm that has many potential applications. Although much work has been done in this area, a great deal of effort has been put in simulation and experimental study. Some researchers proposed algorithms for sensor networks, but unfortunately many of them are based on the same assumptions as in traditional distributed computer systems including mobile ad-hoc networks. Sensor networks, however, are very different from the computing systems we have built before in terms of energy concerns, large scale, unreliable communication, etc. Thus, most of the algorithm design foundations are not suitable for sensor networks.We have two observations for a sensor network. First, a sensor network is composed of fragile nodes with limited computation capability, operated on limited battery power, and connected via lossy wireless networks. Therefore, due to the energy consumption of transmitting information to a single point, the imprecise knowledge of the network, and the dynamic status of the network, it is prohibitive to run centralized algorithms on a sensor network; instead, a localized algorithm is preferable. Second, since a sensor network consists of a large number of nodes, algorithm analysis is also different from that of traditional computer systems. Communication complexity is important because communication captures the energy consumption. In additon, analysis should not rely on the specific location of each node, but be based on the random distribution of the sensors. The random analysis, instead of the fixed graph structure, should be used for performance evaluation.Intellectual merit: We propose to address those theoretical challenges by examining the computationallimitations and capabilities, algorithm design, and performance analysis for sensor networks based on localized diffusion-like operation and random analysis. Specifically, we look into three sensor network problems: clock synchronization, robot navigation and task assignment, and information diffusion in a mobile sensor network. The first problem is a classic topic for distributed systems, which has attracted much attention for the past several decades. By solving it, it can help us to understand the fundamental limitations and capabilities of a sensor network. The second application addresses one of the most important aspects of a sensor network: data dissemination. We design localized, fault-tolerant, and very simple algorithms for the above two problems. The third one estimates the speed for information diffusion in a random network, which is very important in analyzing the performance for a localized algorithm. The analysis techniques will benefit the algorithm design and analysis for other problems in sensor network applications and infrastructure design.We believe our effort is a first step toward understanding sensor networks, and exploring how to design and analyze algorithms for sensor networks. Much theoretical work has done on general networks, but most relies on the assumptions that are not appropriate for sensor networks. Localized and fault-tolerant algorithm design and analysis are very important and promising for the future prevalence of sensor network deployment. This research will help to solve and answer the fundamental problems and limits in sensor networks, for example, clock synchronization, data dissemination, information diffusion, and so on.Broader impact: The project will integrate research and education by introducing sensor network and more advanced algorithm design techniques to the students. It will help to supplement one undergraduate network course and design two graduate level courses. Results from the project will be disseminated via conferences, journals, and the Internet. Furthermore, this project will stimulate the collaboration with people from various disciplines, e.g., networking, computational geometry, online algorithm, matrix analysis, robotics, and so forth.
传感器网络是一种新的计算范式,具有许多潜在的应用前景。虽然在这方面已经做了大量的工作,但在模拟和实验研究方面投入了大量的精力。一些研究人员提出了传感器网络的算法,但不幸的是,许多算法都是基于与传统分布式计算机系统(包括移动自组织网络)相同的假设。然而,在能源问题、大规模、不可靠的通信等方面,传感器网络与我们之前建立的计算系统有很大的不同。因此,大多数算法设计基础并不适用于传感器网络。对于传感器网络,我们有两个观测值。首先,传感器网络由计算能力有限的脆弱节点组成,使用有限的电池电量,并通过有损无线网络连接。因此,由于将信息传输到单点的能量消耗,网络知识的不精确以及网络的动态状态,在传感器网络上运行集中式算法是禁止的;相反,本地化算法更可取。其次,由于传感器网络由大量节点组成,算法分析也不同于传统计算机系统。通信复杂性很重要,因为通信捕获了能量消耗。此外,分析不应依赖于每个节点的具体位置,而应基于传感器的随机分布。性能评价不应采用固定的图结构,而应采用随机分析。智力优势:我们建议通过检查基于局部扩散操作和随机分析的传感器网络的计算限制和能力,算法设计和性能分析来解决这些理论挑战。具体而言,我们研究了三个传感器网络问题:时钟同步,机器人导航和任务分配,以及移动传感器网络中的信息扩散。第一个问题是分布式系统的一个经典话题,在过去的几十年里引起了人们的广泛关注。通过解决这个问题,它可以帮助我们理解传感器网络的基本限制和能力。第二个应用解决了传感器网络最重要的一个方面:数据传播。针对上述两个问题,我们设计了局部的、容错的、非常简单的算法。第三部分估计随机网络中信息扩散的速度,这对分析局部化算法的性能非常重要。这些分析技术将有利于传感器网络应用和基础设施设计中其他问题的算法设计和分析。我们相信我们的努力是理解传感器网络的第一步,并探索如何设计和分析传感器网络的算法。许多理论工作已经在一般网络上完成,但大多数依赖于不适用于传感器网络的假设。本地化和容错算法的设计和分析对于未来传感器网络部署的普及非常重要和有前途。这项研究将有助于解决和回答传感器网络中的基本问题和限制,如时钟同步、数据传播、信息扩散等。更广泛的影响:该项目将通过向学生介绍传感器网络和更先进的算法设计技术来整合研究和教育。这将有助于补充一门本科网络课程和设计两门研究生课程。该项目的结果将通过会议、期刊和互联网传播。此外,这个项目将激发来自不同学科的人的合作,例如,网络,计算几何,在线算法,矩阵分析,机器人等。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qun Li其他文献
Length evolution of fused-ring electron acceptors toward optimal blend morphology in polymer solar cells incorporating asymmetric benzodithiophene-based donors
包含不对称苯并二噻吩供体的聚合物太阳能电池中稠环电子受体向最佳共混形态的长度演化
- DOI:
10.1039/c8ta11363g - 发表时间:
2019-02 - 期刊:
- 影响因子:11.9
- 作者:
Qianqian Zhu;Deyu Liu;Zhou Lu;Chunyang Gu;Kaili Zhang;Xichang Bao;Qun Li;Renqiang Yang - 通讯作者:
Renqiang Yang
A Kind of Fast Green Production Process for Separating Chalcone Compound Extracted from Fresh Angelica keiskei
一种从新鲜明日叶中提取查耳酮化合物的快速绿色生产工艺
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Qian Liu;Yue Wang;M. Ma;C. Liu;Qingqing Pei;Qun Li - 通讯作者:
Qun Li
Synthesis of hydrophobic Pd-poly(ionic liquid)s with excellent CO2 affinity to efficiently catalyze CO2 hydrogenation to formic acid
具有优异CO2亲和力的疏水性Pd-聚离子液体的合成,有效催化CO2加氢生成甲酸
- DOI:
10.1016/j.fuel.2022.124853 - 发表时间:
2022 - 期刊:
- 影响因子:7.4
- 作者:
Baicheng Feng;Zichen Zhang;Jiaqiang Wang;Donglin Yang;Qun Li;Yaping Liu;Hengjun Gai;Tingting Huang;Hongbing Song - 通讯作者:
Hongbing Song
A Novel Inherently Flame-Retardant Composite Based on Zinc Alginate/Nano-Cu2O
一种基于海藻酸锌/纳米 Cu2O 的新型固有阻燃复合材料
- DOI:
10.3390/polym11101575 - 发表时间:
2019-09 - 期刊:
- 影响因子:5
- 作者:
Peng Xu;Peiyuan Shao;Qing Zhang;Wen Cheng;Zichao Li;Qun Li - 通讯作者:
Qun Li
Fatigue life analysis of wind turbine gear with oxide inclusion
含氧化物夹杂风力发电机齿轮疲劳寿命分析
- DOI:
10.1111/ffe.13393 - 发表时间:
2020-12 - 期刊:
- 影响因子:3.7
- 作者:
Ran Liu;Dexin Sun;Junling Hou;Fengjun Liu;Qun Li - 通讯作者:
Qun Li
Qun Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qun Li', 18)}}的其他基金
CSR:Small:System Support for Edge Computing Applications
CSR:小型:边缘计算应用的系统支持
- 批准号:
1816399 - 财政年份:2018
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Student Travel Support for IEEE SEC 2016 Conference
IEEE SEC 2016 会议学生旅行支持
- 批准号:
1641337 - 财政年份:2016
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Student Travel Support for IEEE INFOCOM 2013
IEEE INFOCOM 2013 学生旅行支持
- 批准号:
1322696 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NeTS: Small: Spectrum Sensing, Allocation, and Charging for Cognitive Radio Networks
NeTS:小型:认知无线电网络的频谱感知、分配和计费
- 批准号:
1320453 - 财政年份:2013
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NeTS: SMALL: Reliable and Efficient Communication Support for Highly Mobile Ad Hoc Networks
NetS:小型:为高度移动的自组织网络提供可靠、高效的通信支持
- 批准号:
1117412 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Fully Nonlinear Equations in Complex Geometry
复杂几何中的完全非线性方程
- 批准号:
1105786 - 财政年份:2011
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NEDG: Efficient Protocol Design for RFID Systems
NEDG:RFID 系统的高效协议设计
- 批准号:
0831904 - 财政年份:2009
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Advanced Data Management for Sensor Networks
职业:传感器网络的高级数据管理
- 批准号:
0747108 - 财政年份:2008
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
NeTS-NOSS: Privacy-Preserving Sensor Networks
NeTS-NOSS:隐私保护传感器网络
- 批准号:
0721443 - 财政年份:2007
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
相似海外基金
SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
- 批准号:
2332534 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
- 批准号:
2349179 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2334624 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
协作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
- 批准号:
2403723 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
合作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
- 批准号:
2312366 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Time-Evolving Graph Learning with Algorithm-System Co-Design
算法系统协同设计的时间演化图学习
- 批准号:
23KJ1786 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for JSPS Fellows
NSF Workshop on Algorithm-Hardware Co-design for Medical Applications
NSF 医疗应用算法硬件协同设计研讨会
- 批准号:
2337454 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant