CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
基本信息
- 批准号:2340273
- 负责人:
- 金额:$ 56.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2029-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Estimating Power, Performance, and Area (PPA) earlier in the electronic design automation (EDA) flow would improve the Quality of Results (QoR) and reliability in chip design. The classical analytical or heuristic methods can be challenging to fine-tune, especially for complex problems. Machine learning (ML) methods have proven to be effective in addressing these problems. Graph Neural Networks (GNNs) have gained popularity since they are among the most natural ways to represent the fundamental objects in the EDA flow. However, with increased design complexity and chip capacity, an increasing performance gap exists between the extremely large graphs in EDA and the insufficient support from general-purpose hardware, such as mainstream graphics processing units (GPUs). This project aims to expedite the large graph machine learning on various EDA tasks, through a full-fledged development of efficient and scalable computing paradigms. This project's novelties are EDA domain knowledge-aware graph machine learning, training acceleration, and algorithm-hardware co-design and optimization. The project's broader significance and importance include: (1) to advance the field of machine learning in chip design, highlighted in National Artificial Intelligence Initiative; (2) to deepen the understanding of interactions among EDA domain knowledge, graph learning, and GPU acceleration; (3) to enrich the computer engineering curriculum and promote participation from undergraduates, underrepresented groups, and K-12 students in STEM fields through relevant programs.The project will develop a design paradigm for efficient, scalable and practical algorithm-hardware co-optimized solutions to significantly accelerate large graph machine learning on EDA tasks using a single GPU. This project consists of three coherent research thrusts: (1) to develop an algorithm-hardware co-optimized paradigm, focusing on restudying EDA graph features, introducing partitioning and selective re-growth methods, and tailoring GPU kernels for unified graph machine learning on EDA tasks using a single GPU; (2) to speed up single GPU for large circuit Graph Neural Network (GNN) training by implementing a tiled reversible architecture for low-memory training, and designing a maxK nonlinearity function to reduce computation costs; (3) to jointly integrate EDA domain knowledge, graph learning, and hardware optimizations to co-search for the appropriate hardware primitives and GNN compression strategies, as well as closely leverage the unique properties of circuit graphs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在电子设计自动化(EDA)流程中更早地估计功耗、性能和面积(PPA)将提高芯片设计的结果质量(QoR)和可靠性。经典的分析或启发式方法可能很难进行微调,特别是对于复杂的问题。机器学习(ML)方法已被证明可以有效地解决这些问题。图神经网络(GNN)已经越来越受欢迎,因为它们是表示EDA流程中基本对象的最自然的方法之一。然而,随着设计复杂性和芯片容量的增加,EDA中的超大图形与通用硬件(如主流图形处理单元(GPU))的支持不足之间存在越来越大的性能差距。该项目旨在通过全面开发高效和可扩展的计算范式,加快各种EDA任务的大型图机器学习。该项目的创新之处在于EDA领域知识感知图机器学习、训练加速以及算法硬件协同设计和优化。该项目更广泛的意义和重要性包括:(1)推进国家人工智能计划中强调的芯片设计中的机器学习领域;(2)加深对EDA领域知识,图学习和GPU加速之间相互作用的理解;(3)丰富计算机工程课程并促进本科生、代表性不足的群体,该项目将开发一种设计范式,用于高效,可扩展和实用的算法-硬件协同优化解决方案,以使用单个GPU显著加速EDA任务的大型图机器学习。该项目由三个连贯的研究重点组成:(1)开发算法-硬件协同优化范式,重点重新研究EDA图特征,引入分区和选择性重新生长方法,并定制GPU内核,用于EDA任务的统一图机器学习使用单个GPU;(2)通过实现用于低存储器训练的平铺可逆架构来加速用于大电路图神经网络(GNN)训练的单个GPU,设计maxK非线性函数以降低计算成本;(3)联合集成EDA领域知识、图学习和硬件优化,以共同搜索适当的硬件原语和GNN压缩策略,该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caiwen Ding其他文献
Ising-CF: A Pathbreaking Collaborative Filtering Method Through Efficient Ising Machine Learning
Ising-CF:通过高效 Ising 机器学习实现的开创性协同过滤方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhuo Liu;Yunan Yang;Zhenyu Pan;Anshujit Sharma;Amit Hasan;Caiwen Ding;Ang Li;Michael Huang;Tong Geng - 通讯作者:
Tong Geng
Learning Topics Using Semantic Locality
使用语义局部性学习主题
- DOI:
10.1109/icpr.2018.8546223 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ziyi Zhao;Krittaphat Pugdeethosapol;Sheng Lin;Zhe Li;Caiwen Ding;Yanzhi Wang;Qinru Qiu - 通讯作者:
Qinru Qiu
FL-DISCO: Federated Generative Adversarial Network for Graph-based Molecule Drug Discovery: Special Session Paper
FL-DISCO:基于图的分子药物发现的联合生成对抗网络:特别会议论文
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Daniel Manu;Yi Sheng;Junhuan Yang;Jieren Deng;Tong Geng;Ang Li;Caiwen Ding;Weiwen Jiang;Lei Yang - 通讯作者:
Lei Yang
Reconfigurable thermoelectric generators for vehicle radiators energy harvesting
用于车辆散热器能量收集的可重构热电发电机
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Donkyu Baek;Caiwen Ding;Sheng Lin;Donghwa Shin;Jaemin Kim;X. Lin;Yanzhi Wang;N. Chang - 通讯作者:
N. Chang
Dynamic Sparse Training via Balancing the Exploration-Exploitation Trade-off
通过平衡探索-利用权衡进行动态稀疏训练
- DOI:
10.1109/dac56929.2023.10247716 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shaoyi Huang;Bowen Lei;Dongkuan Xu;Hongwu Peng;Yue Sun;Mimi Xie;Caiwen Ding - 通讯作者:
Caiwen Ding
Caiwen Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caiwen Ding', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247893 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Continuing Grant
相似海外基金
SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
- 批准号:
2332534 - 财政年份:2024
- 资助金额:
$ 56.07万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247893 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
合作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
- 批准号:
2312366 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
协作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
- 批准号:
2403723 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Standard Grant
NSF Workshop on Algorithm-Hardware Co-design for Medical Applications
NSF 医疗应用算法硬件协同设计研讨会
- 批准号:
2337454 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247891 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Continuing Grant
SHF: Medium: Cross-Stack Algorithm-Hardware-Systems Optimization Towards Ubiquitous On-Device 3D Intelligence
SHF:中:跨堆栈算法-硬件-系统优化,实现无处不在的设备上 3D 智能
- 批准号:
2312758 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Continuing Grant
CAREER: SHF: Chimp: Algorithm-Hardware-Automation Co-Design Exploration of Real-Time Energy-Efficient Motion Planning
职业:SHF:黑猩猩:实时节能运动规划的算法-硬件-自动化协同设计探索
- 批准号:
2239945 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247892 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Continuing Grant
Real-Time Federated Learning at the Wireless Edge via Algorithm-Hardware Co-Design
通过算法-硬件协同设计在无线边缘进行实时联合学习
- 批准号:
EP/X019160/1 - 财政年份:2023
- 资助金额:
$ 56.07万 - 项目类别:
Research Grant