NSWP: Predicting Geomagnetically Induced Fields Driven by Solar Wind Pressure Discontinuities
NSWP:预测由太阳风压不连续性驱动的地磁感应场
基本信息
- 批准号:0519072
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Geomagnetically induced currents (GICs) are a direct consequence of space weather. They are caused primarily by intense and rapidly varying ionospheric currents that can be hazardous to technological systems on the surface of the Earth. Sudden impulse (SI) events caused by the passage of interplanetary shocks have been shown to produce magnetic variations on the ground large and fast enough to cause large GICs. The aim of this project is to develop empirical and physics-based models of the ionospheric portion of the SI current system and use these models to calculate, and ultimately predict, the geomagnetically induced fields at the surface of the Earth. The study will be accomplished by developing an empirical model of the SI currents using measurements from ground-based magnetometers combined with radar measurements of the ionospheric plasma drift. Also, a physics-based model of the SI currents system will be developed using a global magnetospheric model and upstream solar wind measurements to evaluate its ability to represent the current system. The induced magnetic and electric fields from these model current system will be calculated using the numerical techniques known as the method of auxiliary sources, the complex image method, and by utilizing the magnetotelluric equations and a model of the Earth's conductivity. The result of the project will be a predictive model, based on the upstream solar wind conditions, that will forecast the size, location, and duration of geomagnetically induced fields produced by SI events. In addition, techniques that combine magnetometer and radar data will be developed. This research has important scientific relevance becaue large GICs are known to cause severe effects on electric power grids, sometimes resulting in socioeconomic losses that can exceed tens of millions of dollars. The research will involve both undergraduate and graduate students in the engineering and physics departments.
地磁感应电流(gic)是空间天气的直接后果。它们主要是由强烈和迅速变化的电离层电流引起的,这种电流可能对地球表面的技术系统造成危险。由行星际冲击通过引起的突然脉冲(SI)事件已被证明能在地面上产生大而快的磁场变化,足以引起大的GICs。该项目的目的是开发基于经验和物理的SI电流系统电离层部分模型,并使用这些模型来计算并最终预测地球表面的地磁感应场。这项研究将通过利用地面磁力计测量和电离层等离子体漂移的雷达测量相结合,建立一个SI电流的经验模型来完成。此外,将使用全球磁层模型和上游太阳风测量来开发一个基于物理的SI电流系统模型,以评估其代表当前系统的能力。这些模型电流系统的感应磁场和电场将使用辅助源法、复像法、大地电磁方程和地球电导率模型等数值技术进行计算。该项目的结果将是一个基于上游太阳风条件的预测模型,该模型将预测由SI事件产生的地磁感应场的大小、位置和持续时间。此外,将开发结合磁力计和雷达数据的技术。这项研究具有重要的科学意义,因为已知大型gic会对电网造成严重影响,有时会导致超过数千万美元的社会经济损失。这项研究将涉及工程系和物理系的本科生和研究生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Murr其他文献
David Murr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Murr', 18)}}的其他基金
MRI: Acquisition of Advanced Scientific GPS Receivers for Magnetospheric and Ionospheric Research
MRI:采购用于磁层和电离层研究的先进科学 GPS 接收器
- 批准号:
0923476 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
NSWP: Predicting Geomagnetically Induced Fields Driven by Solar Wind Pressure Discontinuities
NSWP:预测由太阳风压不连续性驱动的地磁感应场
- 批准号:
1010450 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Imaging, Estimation, and Analysis of Density Distributions in the Conjugate Polar Ionospheres
合作研究:共轭极地电离层密度分布的成像、估计和分析
- 批准号:
0840733 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
相似海外基金
NSF PRFB FY 2023: Considering evolutionary responses to temperature variability when predicting risk to climate change and disease in amphibians
NSF PRFB 2023 财年:在预测气候变化和两栖动物疾病风险时考虑对温度变化的进化反应
- 批准号:
2305659 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship Award
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
- 批准号:
EP/Y03614X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Predicting effects of interannual variability in climate and drought on plant community outcomes, resilience, and soil carbon using temporally replicated grassland reconstructions
使用临时复制的草地重建来预测气候和干旱的年际变化对植物群落结果、恢复力和土壤碳的影响
- 批准号:
2343738 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Predicting abnormalities in abdominal organs through prognostic factors extracted from image data
通过从图像数据中提取的预后因素来预测腹部器官的异常
- 批准号:
24K21121 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
R-Map - Mapping, understanding, assessing and predicting the effects of remote working arrangements in urban and rural areas
R-Map - 绘制、理解、评估和预测城乡地区远程工作安排的影响
- 批准号:
10106145 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Predicting future biodiversity of ecosystem service providers in Japan using new approaches to quantify and reduce uncertainty
使用量化和减少不确定性的新方法来预测日本生态系统服务提供者的未来生物多样性
- 批准号:
24K09176 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
- 批准号:
2317079 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Predicting emergence risk of future zoonotic viruses through computational learning
通过计算学习预测未来人畜共患病毒的出现风险
- 批准号:
MR/X019616/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Marine Debris at Coastlines: predicting sources from drift, dispersion, and beaching via experiments and multiscale stochastic models
职业:海岸线的海洋碎片:通过实验和多尺度随机模型预测漂移、分散和搁浅的来源
- 批准号:
2338221 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant