Weathering Uncertainty in the Long Run
从长远来看,应对不确定性
基本信息
- 批准号:0519372
- 负责人:
- 金额:$ 20.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-15 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Investment decisions in physical or human capital compel economic agents to look forward and predict the future. They also require an assessment of uncertain growth prospects in a complex environment. When economic agents use probability models, they face questions that are familiar from statistical decision theory and control theory. Is there a chosen benchmark model or models? Do these models depend on unknown parameters or hidden states? Could the models be misspecified? How might data be used to inform decisions? Are inferences about these hidden states important sources of uncertainty in the long run? This proposal investigates three topics that explore implications of dynamic models in which growth uncertainty is a central ingredient. This research could have broader impacts on all subfields of economics and especially the study of financial markets, business cycles and economic growth.First, the research builds models of decentralized economies in which decision makers, private agents and policy makers, confront hidden state Markov chains in a robust manner. These models allow the investigator to explore the forward-looking aspects of capital accumulation, broadly conceived, and its associated valuation. Hidden state Markov models are valuable tools for a variety of scientific disciplines, including economics. A hidden state of a Markov chain can evolve slowly or change infrequently. When decision makers do not directly observe this state, they are compelled to use historical data on signals to make inferences about this state and when it changes. These hidden states can be sources of uncertainty with prolonged consequences. This proposal uses hidden state Markov models in conjunction with recursive formulations of robust decision making. Concerns about robustness apply both to the specification of the underlying dynamics and to the estimation of the hidden growth states. Second, the economic values of assets that have important payout components far into the future incorporate long-run notions of risk or uncertainty. Operator methods will be applied to Markov environments. These methods give ways to infer long-run consequences from the transition dynamics of underlying state variables in an economy. In the proposed research, these methods will be tailored to the study of the long run components of asset values. Valuation operators link prices of payoffs with different maturities. A specific valuation operator maps investment payoffs in the future into current values. A family of such operators can be constructed depending on the time between the payoff and the current value. These valuation operators may be well approximated by a small number of components or even a single component when the elapsed time between the payoff date and the valuation date is large. For instance, a dominant component or eigen function may exist that dictates how values are related to payoffs in the long run. These operator methods applied to possibly nonlinear Markov environments give rise to well defined notions of dominant pricing factors and well defined ways to characterize when these components are important. These operator methods give measures of the long-run components of asset values implied by dynamic economic models. While these methods are applicable more generally, in the proposed research particular attention will be given to the class of economic models that feature long-run components of uncertainty.Third, decision-makers may smooth information when taking actions because of costs or constraints on the flow of information. This research explores what implications these information flow constraints have for dynamic economic models with growth uncertainty. Smooth predictions of hidden states may be less costly to process. Results from information theory suggest that this mechanism provides a useful perspective on the role of signals in Markov decision problems. Signal processing can emerge as the outcome of optimization subject to information constraints. Economists have found this to be an intriguing model of why economic agents respond sluggishly to information.
物质或人力资本的投资决策迫使经济主体向前看并预测未来。它们还需要对复杂环境下不确定的增长前景进行评估。当经济主体使用概率模型时,他们面临的问题与统计决策理论和控制理论相似。是否有一个或多个选定的基准模型?这些模型是否依赖于未知参数或隐藏状态?模型是否被错误指定?如何使用数据来为决策提供信息?从长远来看,对这些隐藏状态的推断是不确定性的重要来源吗?本提案研究了三个主题,探讨了以增长不确定性为核心成分的动态模型的含义。这项研究可能会对经济学的所有子领域产生更广泛的影响,特别是对金融市场、商业周期和经济增长的研究。首先,该研究建立了分散经济的模型,其中决策者,私人代理人和决策者以稳健的方式面对隐藏的状态马尔可夫链。这些模型允许研究者探索资本积累的前瞻性方面,广泛的构想,及其相关的估值。隐状态马尔可夫模型是包括经济学在内的各种科学学科的宝贵工具。马尔可夫链的隐藏状态可以缓慢地演化或不频繁地变化。当决策者不能直接观察这种状态时,他们被迫使用信号的历史数据来推断这种状态及其变化的时间。这些隐藏的状态可能是不确定性的来源,并带来长期的后果。该建议将隐状态马尔可夫模型与鲁棒决策的递归公式相结合。对鲁棒性的关注既适用于潜在动力学的说明,也适用于隐藏增长状态的估计。其次,在未来很长一段时间内具有重要支付成分的资产的经济价值包含了风险或不确定性的长期概念。算子方法将应用于马尔可夫环境。这些方法提供了从经济中潜在状态变量的转变动态中推断长期后果的方法。在建议的研究中,这些方法将适合于研究资产价值的长期组成部分。估值运营商将不同期限的收益价格联系起来。一个特定的估值操作者将未来的投资回报映射为当前价值。一类这样的操作符可以根据支付和当前值之间的时间来构造。当支付日期和估值日期之间的时间间隔很长时,这些估值操作符可以通过少量成分甚至单个成分很好地近似。例如,可能存在一个主导成分或特征函数,它决定了价值与长期收益之间的关系。这些算子方法应用于可能的非线性马尔可夫环境,产生了明确定义的主导定价因素的概念,以及明确定义的方法来表征这些组件何时是重要的。这些操作方法给出了动态经济模型所隐含的资产价值的长期组成部分的度量。虽然这些方法更普遍地适用,但在拟议的研究中,将特别关注以不确定性的长期成分为特征的一类经济模型。第三,决策者在采取行动时可能会由于成本或信息流动的限制而使信息平滑。本研究探讨了这些信息流约束对具有增长不确定性的动态经济模型的影响。对隐藏状态的平滑预测可能会降低处理成本。信息理论的结果表明,这一机制为信号在马尔可夫决策问题中的作用提供了一个有用的视角。信号处理可以作为信息约束下优化的结果出现。经济学家发现,这是一个有趣的模型,可以解释为什么经济主体对信息反应迟钝。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lars Hansen其他文献
Durability of Output and Expected Stock Returns Durability of Output and Expected Stock Returns *
产出的耐久性和预期股票回报 产出的耐久性和预期股票回报*
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
João F Gomes;Leonid Kogan;Moto Yogo;João F Gomes;James Choi;Lars Hansen;John Heaton;Rob Stambaugh - 通讯作者:
Rob Stambaugh
Controlled population‐based comparative study of USA and international adult [55‐74] neurological deaths 1989‐2014
1989-2014 年美国和国际成年人 [55-74] 神经系统死亡的受控人群比较研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3.5
- 作者:
Colin Pritchard;Emily Rosenorn;Anne Silk;Lars Hansen - 通讯作者:
Lars Hansen
Gestaltung der Führungskultur bei der Daimler Group Services Berlin GmbH durch Design Thinking
戴姆勒集团服务柏林有限公司在设计思维中的未来文化设计
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Paul C. Endrejat;M. Simon;Lars Hansen - 通讯作者:
Lars Hansen
21st Century Early Adult (55-74) Deaths from Brain-Disease-Deaths Compared to All Other Cause Mortality in the Major Western Countries – Exposing a Hidden Epidemic
西方主要国家21世纪早期成年人(55-74岁)脑部疾病死亡与其他原因死亡率的比较——揭露隐藏的流行病
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.9
- 作者:
C. Pritchard;Lars Hansen;Anne Silk;Emily Rosenorn - 通讯作者:
Emily Rosenorn
LBP-031 AZD2693, a potent PNPLA3 antisense oligonucleotide, decreases hepatic PNPLA3 mRNA and liver fat content in participants with presumed MASH and homozygous for the PNPLA3148M risk allele
- DOI:
10.1016/s0168-8278(24)00598-1 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Javier Armisen;Mitra Rauschecker;Janeli Sarv;Mathias Liljeblad;Mohammad Niazi;Oskar Clewe;Olof Eklund;Therese Sandell;Daniel Linden;Stefan Hallen;Linda Wernevik;Sofia Köster;Erika Morizzo;Jeanna Sundelin;Björn Carlsson;Lars Hansen;Jane Knöchel;Sanjay Bhanot;Shuling Guo;Ola Fjellstrom - 通讯作者:
Ola Fjellstrom
Lars Hansen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lars Hansen', 18)}}的其他基金
Collaborative Research: The rheological behavior of gouge at high temperature
合作研究:高温下凿岩的流变行为
- 批准号:
2240734 - 财政年份:2023
- 资助金额:
$ 20.15万 - 项目类别:
Continuing Grant
REU Site: Collaborative Research: Research Opportunities in Rock Deformation
REU 网站:合作研究:岩石变形的研究机会
- 批准号:
2050893 - 财政年份:2022
- 资助金额:
$ 20.15万 - 项目类别:
Standard Grant
Collaborative Research: Towards a new framework for interpreting mantle deformation: Integrating theory, experiments, and observations spanning seismic to convective timescales
合作研究:建立解释地幔变形的新框架:整合从地震到对流时间尺度的理论、实验和观测
- 批准号:
2218305 - 财政年份:2022
- 资助金额:
$ 20.15万 - 项目类别:
Continuing Grant
Collaborative Research: Experimental determination of the influence of water on the viscosity of rocks
合作研究:水对岩石粘度影响的实验测定
- 批准号:
2022433 - 财政年份:2020
- 资助金额:
$ 20.15万 - 项目类别:
Continuing Grant
Collaborative Research: Transformation plasticity as a transient creep mechanism in Earth’s crust and mantle
合作研究:转变塑性作为地壳和地幔中的瞬态蠕变机制
- 批准号:
2023061 - 财政年份:2020
- 资助金额:
$ 20.15万 - 项目类别:
Standard Grant
Topics in Economic Dynamics and Time Series
经济动态和时间序列主题
- 批准号:
0112359 - 财政年份:2001
- 资助金额:
$ 20.15万 - 项目类别:
Continuing Grant
Models of Local Interactions in Economics
经济学中的地方互动模型
- 批准号:
9601920 - 财政年份:1996
- 资助金额:
$ 20.15万 - 项目类别:
Continuing Grant
Characterizing and Testing the Implications of Dynamic Models in Economics and Finance
表征和测试动态模型在经济和金融中的含义
- 批准号:
9409501 - 财政年份:1994
- 资助金额:
$ 20.15万 - 项目类别:
Standard Grant
Exploring the Time-Series Implications of Dynamic Models in Economics and Finance
探索经济和金融动态模型的时间序列含义
- 批准号:
9110015 - 财政年份:1991
- 资助金额:
$ 20.15万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Analysis of uncertainty, long-time statistics and singularity formation in fluid flow models
职业:流体流动模型中的不确定性、长期统计数据和奇点形成分析
- 批准号:
2239325 - 财政年份:2023
- 资助金额:
$ 20.15万 - 项目类别:
Continuing Grant
Towards Robust Long-Term Infrastructure Asset Management under Deep Uncertainty
在高度不确定性下实现稳健的长期基础设施资产管理
- 批准号:
RGPIN-2022-04591 - 财政年份:2022
- 资助金额:
$ 20.15万 - 项目类别:
Discovery Grants Program - Individual
From Future Learning To Current Action: Long-Term Sequential Infrastructure Planning Under Uncertainty
从未来的学习到当前的行动:不确定性下的长期顺序基础设施规划
- 批准号:
1663479 - 财政年份:2017
- 资助金额:
$ 20.15万 - 项目类别:
Standard Grant
Water quality, fish habitat, long waves and uncertainty aspects of coastal engineering and learning how to model large-scale coastal problems
水质、鱼类栖息地、长波和海岸工程的不确定性方面以及学习如何模拟大规模海岸问题
- 批准号:
7090-2000 - 财政年份:2006
- 资助金额:
$ 20.15万 - 项目类别:
Discovery Grants Program - Individual
Water quality, fish habitat, long waves and uncertainty aspects of coastal engineering and learning how to model large-scale coastal problems
水质、鱼类栖息地、长波和海岸工程的不确定性方面以及学习如何模拟大规模海岸问题
- 批准号:
7090-2000 - 财政年份:2004
- 资助金额:
$ 20.15万 - 项目类别:
Discovery Grants Program - Individual
Water quality, fish habitat, long waves and uncertainty aspects of coastal engineering and learning how to model large-scale coastal problems
水质、鱼类栖息地、长波和海岸工程的不确定性方面以及学习如何模拟大规模海岸问题
- 批准号:
7090-2000 - 财政年份:2002
- 资助金额:
$ 20.15万 - 项目类别:
Discovery Grants Program - Individual
Water quality, fish habitat, long waves and uncertainty aspects of coastal engineering and learning how to model large-scale coastal problems
水质、鱼类栖息地、长波和海岸工程的不确定性方面以及学习如何模拟大规模海岸问题
- 批准号:
7090-2000 - 财政年份:2001
- 资助金额:
$ 20.15万 - 项目类别:
Discovery Grants Program - Individual
Water quality, fish habitat, long waves and uncertainty aspects of coastal engineering and learning how to model large-scale coastal problems
水质、鱼类栖息地、长波和海岸工程的不确定性方面以及学习如何模拟大规模海岸问题
- 批准号:
7090-2000 - 财政年份:2000
- 资助金额:
$ 20.15万 - 项目类别:
Discovery Grants Program - Individual
Fuzzy Drought Control Considering Uncertainty in Long-term Forecast
考虑长期预测不确定性的模糊抗旱
- 批准号:
03452210 - 财政年份:1991
- 资助金额:
$ 20.15万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Model and data synthesis of the tire-road system (long-term forecast) taking into account polymorphic uncertainty (B04)
考虑多态不确定性的轮胎-道路系统模型和数据综合(长期预测)(B04)
- 批准号:
496338556 - 财政年份:
- 资助金额:
$ 20.15万 - 项目类别:
CRC/Transregios