DHB: Multilevel Autoregressive Moving Average (ARMA) and Dynamic Models for Longitudinal Data and the Study of Human Interactions
DHB:纵向数据的多级自回归移动平均 (ARMA) 和动态模型以及人类交互的研究
基本信息
- 批准号:0527449
- 负责人:
- 金额:$ 74.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-02-01 至 2010-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Scientists interested in describing the complexity of human interaction have begun to realize the necessity of collecting intensive longitudinal data to enable them to describe the dynamics of the interaction process. These data can take the form of a daily diary of marital interactions, an hourly account of the behavior of an unruly student, a second to second account of a parent-infant interaction, a continuous time measure of physiological characteristics, or a dose-to-dose account of the effect of a drug or treatment regimen. Unlike the more common approaches to the study of development that may use a single, simple model to describe average group trends, dynamic models can accommodate differences in how individuals change. They can be used to describe how a process unfolds for each individual, to show how individuals differ in that process, and to predict how that process will evolve. Once these dynamics are understood, the opportunity exists to develop a control model with the intent of moving the process toward a desired outcome. As part of this project, the investigators plan to adapt, modify, and when necessary develop new dynamic and control models appropriate for the needs of developmental researchers. To accomplish these goals, this project brings together members of the engineering, applied developmental statistics, and developmental science research communities to develop models that will specifically address questions related to differences in the way individuals develop and interact.To demonstrate this model data from the Infant and Child Temperament Study will be assessed to determine the individual differences in how an infant develops the ability to self-regulate emotion. The state-space implementation of this model will allow more flexibility and a richer description of the dynamics of the process by producing a model that can change and develop as the process changes. This approach leads directly to the optimal control/process adjustment model in which individuals can be assessed to determine whether they moving in the direction of a desired outcome. If they are off target, critical control variable values can be assessed and changed. The results of these changes can then be assessed to determine if the individual is back on target. To demonstrate this model, the investigators will assess parent-infant interaction data related to the parents' ability to soothe a distressed child. A model will be developed that will allow investigators to assess which combinations of parent behavior and infant response result in decreasing the child's distress. This model can then be used to provide online assessment to parents that will give them useful feedback during the course of the subsequent interactions suggesting whether their behavior should lead to success and whether and how they should modify that behavior. This general analytic approach will allow researchers to model many different situations in which such feedback can help optimize the quality of an interaction. These can include marital interactions, parent/child relationships, interactions between teachers and students, and encounters between therapists and clients. These methods will also be appropriate for optimizing individual outcomes based on drug treatments, physical therapies, medical treatments, and combinations of different treatment regimens.
对描述人类互动的复杂性感兴趣的科学家已经开始意识到收集密集的纵向数据的必要性,以使他们能够描述互动过程的动态。这些数据可以采取婚姻互动的每日日记,不守规矩的学生的行为的每小时帐户,父母-婴儿互动的第二到第二帐户,生理特征的连续时间测量,或药物或治疗方案的效果的剂量到剂量帐户的形式。与更常见的发展研究方法不同,动态模型可以适应个体如何变化的差异。它们可以用来描述一个过程是如何为每个人展开的,展示个体在这个过程中的差异,并预测这个过程将如何演变。 一旦理解了这些动态,就有机会开发一个控制模型,目的是使过程朝着预期的结果发展。作为该项目的一部分,研究人员计划适应,修改,并在必要时开发适合发展研究人员需求的新的动态和控制模型。 为了实现这些目标,该项目汇集了工程,应用发展统计,和发展科学研究团体开发模型,专门解决与个体发展和互动方式差异相关的问题。为了证明这一模型,将评估婴儿和儿童气质研究的数据,以确定婴儿如何发展自我能力的个体差异。调节情绪 该模型的状态空间实现将允许更大的灵活性和更丰富的动态过程的描述,通过产生一个模型,可以随着过程的变化而变化和发展。 这种方法直接导致了最佳控制/过程调整模型,在该模型中,可以对个人进行评估,以确定他们是否朝着预期结果的方向发展。如果它们偏离目标,则可以评估和改变关键控制变量值。 然后可以评估这些变化的结果,以确定个体是否回到目标。 为了证明这一模型,研究人员将评估与父母抚慰痛苦儿童的能力有关的父母-婴儿互动数据。将开发一个模型,使研究人员能够评估父母行为和婴儿反应的哪种组合导致减少儿童的痛苦。 然后,这个模型可以用来为父母提供在线评估,在随后的互动过程中为他们提供有用的反馈,建议他们的行为是否应该导致成功,以及他们是否应该以及如何改变这种行为。这种通用的分析方法将使研究人员能够模拟许多不同的情况,在这些情况下,这种反馈可以帮助优化交互的质量。 这些可能包括婚姻互动,父母/子女关系,教师和学生之间的互动,以及治疗师和客户之间的接触。这些方法也将适合于基于药物治疗、物理治疗、医学治疗和不同治疗方案的组合来优化个体结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Rovine其他文献
Michael Rovine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
DMS/NIGMS 1: Multilevel stochastic orthogonal subspace transformations for robust machine learning with applications to biomedical data and Alzheimer's disease subtyping
DMS/NIGMS 1:多级随机正交子空间变换,用于稳健的机器学习,应用于生物医学数据和阿尔茨海默病亚型分析
- 批准号:
2347698 - 财政年份:2024
- 资助金额:
$ 74.94万 - 项目类别:
Continuing Grant
Development and Evaluation of a Multilevel, Socio-Culturally Contextualized Digital Health Decision Intervention to Reduce Medical Mistrust and Improve Status-Neutral HIV Service Use among HLMSM
开发和评估多层次、社会文化背景的数字健康决策干预措施,以减少 HLMSM 中的医疗不信任并改善状态中立的艾滋病毒服务使用
- 批准号:
11014241 - 财政年份:2024
- 资助金额:
$ 74.94万 - 项目类别:
Examining the multilevel factors on quality of end-of-life care among cancer patients in Puerto Rico
检查影响波多黎各癌症患者临终关怀质量的多层次因素
- 批准号:
10557584 - 财政年份:2023
- 资助金额:
$ 74.94万 - 项目类别:
Exploring and Intervening on Multilevel Factors of Medical Mistrust among Hispanic/Latino Gay, Bisexual and Other Men Who Have Sex with Men (HLMSM) for HIV Prevention in a Priority Jurisdiction
探索和干预西班牙裔/拉丁裔同性恋、双性恋和其他男男性行为者 (HLMSM) 中医疗不信任的多层次因素,以在优先管辖区预防艾滋病毒
- 批准号:
10794835 - 财政年份:2023
- 资助金额:
$ 74.94万 - 项目类别:
A Multilevel, Multiphase Optimization Strategy for PrEP: Patients and Providers in Primary Care
PrEP 的多层次、多阶段优化策略:初级保健中的患者和提供者
- 批准号:
10818740 - 财政年份:2023
- 资助金额:
$ 74.94万 - 项目类别:
ERI: Multilevel Inverse Robust Co-Design of Materials, Products, and Manufacturing Processes
ERI:材料、产品和制造工艺的多级逆稳健协同设计
- 批准号:
2301808 - 财政年份:2023
- 资助金额:
$ 74.94万 - 项目类别:
Standard Grant
Limited interaction cohort to identify determinants of viral suppression in MSM and transfeminine individuals living with HIV: A multilevel approach
有限的相互作用队列来确定 MSM 和跨性别女性 HIV 感染者病毒抑制的决定因素:多层次方法
- 批准号:
10685845 - 财政年份:2023
- 资助金额:
$ 74.94万 - 项目类别:
Do no digital harm? A multilevel evaluation of technology-facilitated team care on the patient-provider relationship in health disparity populations
没有数字伤害吗?
- 批准号:
10563565 - 财政年份:2023
- 资助金额:
$ 74.94万 - 项目类别:
Strengthening implementation science in Acute Respiratory Failure using multilevel analysis of existing data
利用现有数据的多级分析加强急性呼吸衰竭的实施科学
- 批准号:
10731311 - 财政年份:2023
- 资助金额:
$ 74.94万 - 项目类别:
Development and Evaluation of a Multilevel, Socio-Culturally Contextualized Digital Health Decision Intervention to Reduce Medical Mistrust and Improve Status-Neutral HIV Service Use among HLMSM
开发和评估多层次、社会文化背景的数字健康决策干预措施,以减少 HLMSM 中的医疗不信任并改善状态中立的艾滋病毒服务使用
- 批准号:
10790605 - 财政年份:2023
- 资助金额:
$ 74.94万 - 项目类别: