Strengthening implementation science in Acute Respiratory Failure using multilevel analysis of existing data
利用现有数据的多级分析加强急性呼吸衰竭的实施科学
基本信息
- 批准号:10731311
- 负责人:
- 金额:$ 13.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
PROJECT SUMMARY
Up to 1 million Americans experience acute respiratory failure (ARF) and require mechanical ventilation in an
intensive care unit annually. Studies repeatedly revealed incomplete penetration of proven-effective,
sometimes life-saving, evidence-based practices (EBP) for these patients, and it is unclear how to select
optimal implementation strategies that can bridge the gap between evidence and practice. Common
approaches to selection have inherent limitations. For example, concept mapping and implementation mapping
rely heavily on stakeholder perspectives, are labor-intensive, and may focus on stakeholder preferences
instead of strategies with the greatest potential impact. Quantitative approaches are also challenging because
important determinants of practice - such as individual motivation and organizational culture - are difficult to
measure at scale.
One important goal of implementation is to reduce variability in the uptake of EBPs attributable to
clinicians and the environmental setting. While clinical practice should vary in response to patient factors and
preferences, implementation programs try to overcome clinician and environmental factors (e.g. insufficient
knowledge or resources) that limit EBP uptake. Applying the Consolidated Framework for Implementation
Research (CFIR) to this conceptual model, the domains of Individuals and Inner Setting should have minimal
influence on adherence to EBPs after a successful critical care implementation program. We hypothesize that
variability attributable to the CFIR domains of Individuals and Inner Setting is lower among patients when a
treatment is supported by high-quality evidence compared to patients for whom the existing evidence for a
treatment is weaker. Our overall objective is to demonstrate 1) how established multilevel modeling techniques
can be used to estimate the proportion of variation in the use of EBPs that is attributable to the CFIR domains
of Inner Setting and Characteristics of Individuals, and 2) how the resulting information can inform selection of
implementation strategies and evaluate their effectiveness. As a proof of concept, we will study two proveneffective
interventions - low tidal volume ventilation for acute respiratory distress syndrome and bag mask
ventilation during intubation. We will use existing multicenter datasets from the Low Tidal Volume Universal
Support: Feasibility of Recruitment for lnterventional Trial (LOTUS-FRUIT) cohort study and from 3 randomized
trials that collected data on the use of bag-mask ventilation.
项目摘要
多达100万美国人经历急性呼吸衰竭(ARF),需要机械通气,
重症监护室每年。研究一再表明,经证实有效的,
有时候,这些患者需要挽救生命的循证实践(EBP),目前还不清楚如何选择
最佳实施战略,可以弥合证据与实践之间的差距。共同
选择方法有其固有的局限性。例如,概念映射和实现映射
严重依赖利益相关者的观点,是劳动密集型的,可能会关注利益相关者的偏好
而不是潜在影响最大的战略。定量方法也具有挑战性,因为
实践的重要决定因素--如个人动机和组织文化--很难
按比例测量。
实施的一个重要目标是减少可归因于下列因素的基本商业惯例吸收的差异:
临床医生和环境设置。虽然临床实践应根据患者因素而变化,
实施方案试图克服临床医生和环境因素(例如,
知识或资源),限制EBP吸收。适用综合执行框架
研究(CFIR)对这个概念模型,个人和内部设置的领域应该有最小的
重症监护实施项目成功后对EBP依从性的影响。我们假设
个体和内部环境的CFIR域的变异性在患者中较低,
与现有证据支持治疗的患者相比,
治疗效果较弱。我们的总体目标是展示1)如何建立多层次建模技术
可用于估计可归因于CFIR结构域的EBP使用中的变异比例
的内部设置和个人的特点,以及2)如何产生的信息可以告知选择
实施战略并评估其有效性。作为概念的证明,我们将研究两个证明有效的
干预措施-低潮气量通气治疗急性呼吸窘迫综合征和袋式面罩
在插管期间进行通气。我们将使用来自低潮气量通用数据库的现有多中心数据集。
支持:干预性试验(LOTUS-FRUIT)队列研究招募的可行性和3例随机化
收集使用袋式面罩通气数据的试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison Turnbull其他文献
Alison Turnbull的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison Turnbull', 18)}}的其他基金
Health expectations after acute respiratory failure in survivor-care partner dyads
幸存者护理伙伴二人组急性呼吸衰竭后的健康期望
- 批准号:
10732929 - 财政年份:2023
- 资助金额:
$ 13.65万 - 项目类别:
Understanding Response Shift in Acute Respiratory Distress Syndrome (ARDS) survivors
了解急性呼吸窘迫综合征 (ARDS) 幸存者的反应转变
- 批准号:
9925813 - 财政年份:2018
- 资助金额:
$ 13.65万 - 项目类别:
Understanding Response Shift in Acute Respiratory Distress Syndrome (ARDS) survivors
了解急性呼吸窘迫综合征 (ARDS) 幸存者的反应转变
- 批准号:
10383665 - 财政年份:2018
- 资助金额:
$ 13.65万 - 项目类别:
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Dark Data from the White Continent: New Light on Five Decades of Vertebrate Paleontology Collections from the Triassic Fremouw Formation of Antarctica
来自白色大陆的暗数据:对南极洲三叠纪 Fremouw 组的五个十年的脊椎动物古生物学收藏的新认识
- 批准号:
2313242 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
- 批准号:
2338749 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
- 批准号:
2327422 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
- 批准号:
2412195 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
Research Infrastructure: CC* Data Storage: Foundational Campus Research Storage for Digital Transformation
研究基础设施:CC* 数据存储:数字化转型的基础校园研究存储
- 批准号:
2346636 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant
CC* Networking Infrastructure: YinzerNet: A Multi-Site Data and AI Driven Research Network
CC* 网络基础设施:YinzerNet:多站点数据和人工智能驱动的研究网络
- 批准号:
2346707 - 财政年份:2024
- 资助金额:
$ 13.65万 - 项目类别:
Standard Grant














{{item.name}}会员




