Multiscale Experimental and Numerical Design of a Self-Healing Epoxy Adhesive
自修复环氧粘合剂的多尺度实验和数值设计
基本信息
- 批准号:0527965
- 负责人:
- 金额:$ 31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-15 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Used in many applications ranging from microelectronics to aerospace structures, polymer-based adhesives are often considered as the weak link of bonded structures, including those subjected to cyclic loading. In this collaborative experimental and analytical effort, researchers from the University of Illinois at Urbana-Champaign are designing and demonstrating a new class of heterogeneous, multifunctional, epoxy-based adhesives that possess the unique ability to heal autonomically (i.e., without any external intervention) under fatigue loading, thereby substantially expanding the expected lifetime of adhesive joints. This new class of materials is inspired by living systems, in which damage (e.g., a cut or bruise) triggers an autonomic healing response. In biological systems, chemical signals released at the site of injury initiate a systemic response that transports repair agents to the site of damage and promotes healing. To achieve self-healing capability in the adhesive system studied in this project, sub-micron-size "nanocapsules" containing a monomer healing agent are embedded in the epoxy adhesive layer, together with a living catalyst dispersed in the epoxy matrix. As fatigue-induced microcracks appear and propagate in the adhesive layer, the nanocapsules rupture and release the healing agent. The monomer then mixes with the catalyst phase initiating polymerization and rebonding the crack faces. The research project focuses on (i) materials development with processing and characterization of nanocapsules and identification of viable self-healing chemistries for epoxy adhesives, and (ii) a multi-level numerical and experimental investigation of the fatigue response of a self-healing adhesive joint. The successful completion of this project will lead to the development of a radically new type of adhesive system that present a much enhanced resistance to fatigue failure. Initial observations obtained on "bulk" self-healing composites indicate a five- to ten-fold increase in the fatigue life of epoxy-based components. Furthermore, by integrating multi-level experimental techniques with a new multiscale cohesive finite element framework, this project is expected to yield an integrated design tool for multifunctional adhesive joints with application well beyond the proposed self-healing epoxy-based adhesive system. This research project takes place at the Autonomic Materials Laboratories as part of an interdisciplinary research group at the Beckman Institute for Advanced Science and Technology that involves students and faculty from Aerospace Engineering, Engineering Mechanics, Chemistry and Materials Science.
在从微电子到航空航天结构的许多应用中,聚合物基粘合剂通常被认为是粘合结构的薄弱环节,包括那些承受循环载荷的结构。在这项合作实验和分析工作中,来自伊利诺伊大学厄巴纳-香槟分校的研究人员正在设计和展示一类新的异质,多功能,环氧基粘合剂,具有独特的愈合能力(即,没有任何外部干预),从而大大延长了粘合接头的预期寿命。这类新材料的灵感来自生命系统,其中损害(例如,割伤或擦伤)触发自主愈合反应。在生物系统中,在损伤部位释放的化学信号启动全身反应,将修复剂运送到损伤部位并促进愈合。为了实现自愈合能力在本项目中研究的粘合剂系统中,亚微米尺寸的“纳米胶囊”包含单体愈合剂嵌入在环氧树脂粘合剂层中,连同分散在环氧树脂基体中的活性催化剂。随着疲劳诱导的微裂纹在粘合剂层中出现并传播,纳米胶囊破裂并释放愈合剂。然后,单体与催化剂相混合,引发聚合并重新粘合裂纹面。该研究项目的重点是(i)材料开发与纳米胶囊的加工和表征,以及环氧树脂粘合剂可行的自修复化学的识别,以及(ii)自修复粘合剂接头疲劳响应的多层次数值和实验研究。 该项目的成功完成将导致开发一种全新类型的粘合剂系统,该系统具有更强的抗疲劳破坏能力。对“散装”自修复复合材料的初步观察表明,环氧基组件的疲劳寿命增加了五到十倍。此外,通过将多层次实验技术与新的多尺度内聚有限元框架相结合,该项目预计将产生一个多功能胶接接头的集成设计工具,其应用远远超出了所提出的自愈合环氧基粘合剂系统。该研究项目在自主材料实验室进行,作为贝克曼高级科学与技术研究所跨学科研究小组的一部分,该研究小组涉及航空航天工程,工程力学,化学和材料科学的学生和教师。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philippe Geubelle其他文献
Morphogenic composites: Frontal polymerization induced autonomously shaped composites
形态发生复合材料:前沿聚合诱导的自成型复合材料
- DOI:
10.1016/j.compositesa.2025.108827 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:8.900
- 作者:
Ivan C. Wu;Sagar Vyas;Philippe Geubelle;Jeffery W. Baur - 通讯作者:
Jeffery W. Baur
Univariate conditional variational autoencoder for morphogenic pattern design in frontal polymerization-based manufacturing
基于前沿聚合制造中形态发生模式设计的单变量条件变分自编码器
- DOI:
10.1016/j.cma.2025.117848 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:7.300
- 作者:
Qibang Liu;Pengfei Cai;Diab Abueidda;Sagar Vyas;Seid Koric;Rafael Gomez-Bombarelli;Philippe Geubelle - 通讯作者:
Philippe Geubelle
Parallel Simulations of Dynamic Fracture Using Extrinsic Cohesive Elements
- DOI:
10.1007/s10915-008-9254-0 - 发表时间:
2008-11-08 - 期刊:
- 影响因子:3.300
- 作者:
Isaac Dooley;Sandhya Mangala;Laxmikant Kale;Philippe Geubelle - 通讯作者:
Philippe Geubelle
Thermo-chemo-mechanical model and variational multiscale framework for material and geometric evolution in frontal polymerization
用于前沿聚合中材料和几何演化的热 - 化学 - 力学模型及变分多尺度框架
- DOI:
10.1016/j.jmps.2025.106078 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:6.000
- 作者:
Ignasius P.A. Wijaya;Philippe Geubelle;Arif Masud - 通讯作者:
Arif Masud
Philippe Geubelle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philippe Geubelle', 18)}}的其他基金
Active Dynamic Granular Metamaterial through Controlled Jamming-Unjammming Transitions
通过受控干扰-解除干扰过渡的主动动态颗粒超材料
- 批准号:
1761243 - 财政年份:2018
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Multidisciplinary Design of Microvascular Composites Based on a Hierarchical Approach
基于分层方法的微血管复合材料的多学科设计
- 批准号:
1436720 - 财政年份:2014
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Efficient Energy Release Rate Computations for Cracks with Arbitrary Location and Geometry
任意位置和几何形状的裂纹的高效能量释放率计算
- 批准号:
1200086 - 财政年份:2012
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
REU Site: Multidisciplinary Research in Aerospace Science and Engineering
REU 网站:航空航天科学与工程的多学科研究
- 批准号:
0648996 - 财政年份:2007
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
CAREER: High Speed Grinding of Ceramics: Process Simulation and Damage Assessment
职业:陶瓷高速研磨:过程模拟和损伤评估
- 批准号:
9734473 - 财政年份:1998
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Experimental and Analytical Investigation of Dynamic Fiber Pull-Out in Composites
复合材料中动态纤维拉拔的实验和分析研究
- 批准号:
9712291 - 财政年份:1997
- 资助金额:
$ 31万 - 项目类别:
Continuing Grant
相似海外基金
Experimental and numerical studies on internal erosion of granular soils
颗粒土内部侵蚀的实验与数值研究
- 批准号:
DE240101106 - 财政年份:2024
- 资助金额:
$ 31万 - 项目类别:
Discovery Early Career Researcher Award
ThorougH experiMental and numerical investigation of Coupled processes for geologiC Carbon Storage
地质碳储存耦合过程的彻底实验和数值研究
- 批准号:
EP/X026019/1 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Fellowship
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244696 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Numerical and experimental investigation of the impact of preferential flow and nonequilibrium thermodynamics on meltwater transport through snow
优先流和非平衡热力学对融水通过雪输送影响的数值和实验研究
- 批准号:
2243631 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
- 批准号:
2244695 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Getting to the Core of Vortex Mechanics: A Hybrid Experimental and Numerical Study of Twist, Shear, and Wall Interactions
深入涡旋力学的核心:扭转、剪切和壁相互作用的混合实验和数值研究
- 批准号:
2330349 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Standard Grant
Experimental Investigation and Numerical Analysis of the Behaviour of Plate Anchor Foundations Subjected to Cyclic Loading in Sands
砂土中循环荷载作用下板锚基础性能的实验研究和数值分析
- 批准号:
2888310 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Studentship
Numerical and experimental investigation of fluoride crystals as vacuum ultr aviolet light emitters
氟化物晶体作为真空紫外光发射器的数值和实验研究
- 批准号:
23K13047 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Experimental and numerical studies of warpage in composite structures
复合材料结构翘曲的实验和数值研究
- 批准号:
2883613 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Studentship
EAGER: Numerical and Experimental Study of Purcell-Like Locomotion for Microswimmers
EAGER:微型游泳者类普塞尔运动的数值和实验研究
- 批准号:
2328027 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Standard Grant