Efficient Energy Release Rate Computations for Cracks with Arbitrary Location and Geometry

任意位置和几何形状的裂纹的高效能量释放率计算

基本信息

项目摘要

The goal of this fracture mechanics project is to utilize the topological derivative to approximate the energy release rate (ERR) field associated with a (small) crack of arbitrary parameterized geometry. The proposed method is radically different from, and substantially more efficient than, conventional finite element method (FEM), generalized FEM and extended FEM treatment of fracture problems. Indeed, it eliminates the need to discretize the cracked structural component. Rather it provides an approximation of the ERR for a crack of arbitrary geometry located anywhere in the solid by simply evaluate the stress field present in the loaded un-cracked component. This analysis needs to be conducted only once and with a finite element mesh substantially coarser than that needed to model the cracked specimen (since there is no need to capture the stress concentration at a crack front). Moreover it uses conventional FEA methods and thereby it eliminates the need for specialty elements. Ultimately it will be used to generate finite element contour plots that illustrate critical crack geometries throughout the body. Whence, potential failure locations and critical inspection sites can be readily identified. In this proposal, the preliminary results that are limited to 2-D homogenous isotropic linear elastic structures will be extended to heterogeneous, anisotropic, nonlinear three-dimensional structures. Moreover, the first-order approximation will be extended to achieve second-order accuracy. The successful completion of this project will lead to a novel computational design tool that is substantially more efficient than conventional. By substantially facilitating the fracture-based analysis of structural components, the method is expected to have a major impact in all industries for which the design of structural components is dictated by the presence of critical flaws. The method will also be incorporated in the graduate course on fracture mechanics that attracts students from across the College of Engineering. Through the office of Engineering On-Line Education at the University of Illinois, this course will be made available outside the University, and especially to Minority Serving Institutions (MSI).
这个断裂力学项目的目标是利用拓扑导数来近似与任意参数化几何形状的(小)裂纹相关的能量释放率(ERR)场。 所提出的方法是从根本上不同的,并大大更有效地比,传统的有限元法(FEM),广义有限元和扩展有限元断裂问题的处理。 事实上,它消除了离散化裂纹结构部件的需要。 相反,它提供了一个近似的ERR的任意几何形状的裂纹位于固体中的任何地方,通过简单地评估应力场存在于加载的无裂纹组件。该分析仅需进行一次,并且有限元网格比对裂纹试样建模所需的网格粗糙得多(因为不需要捕获裂纹前沿的应力集中)。此外,它使用传统的有限元分析方法,从而消除了对专业元素的需要。最终,它将被用来生成有限元等高线图,说明整个身体的关键裂纹几何形状。因此,可以很容易地确定潜在的故障位置和关键的检查部位。在这个建议中,仅限于二维均匀各向同性线弹性结构的初步结果将扩展到非均匀,各向异性,非线性的三维结构。 此外,一阶近似将被扩展到实现二阶精度。 这个项目的成功完成将导致一个新的计算设计工具,是比传统的更有效。 通过极大地促进结构部件的基于缺陷的分析,该方法预计将在所有行业中产生重大影响,对于这些行业,结构部件的设计取决于关键缺陷的存在。该方法也将被纳入断裂力学的研究生课程,吸引来自工程学院的学生。通过工程在线教育在伊利诺伊大学的办公室,这门课程将在大学外提供,特别是少数民族服务机构(MSI)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philippe Geubelle其他文献

Morphogenic composites: Frontal polymerization induced autonomously shaped composites
形态发生复合材料:前沿聚合诱导的自成型复合材料
Univariate conditional variational autoencoder for morphogenic pattern design in frontal polymerization-based manufacturing
基于前沿聚合制造中形态发生模式设计的单变量条件变分自编码器
  • DOI:
    10.1016/j.cma.2025.117848
  • 发表时间:
    2025-04-01
  • 期刊:
  • 影响因子:
    7.300
  • 作者:
    Qibang Liu;Pengfei Cai;Diab Abueidda;Sagar Vyas;Seid Koric;Rafael Gomez-Bombarelli;Philippe Geubelle
  • 通讯作者:
    Philippe Geubelle
Thermo-chemo-mechanical model and variational multiscale framework for material and geometric evolution in frontal polymerization
用于前沿聚合中材料和几何演化的热 - 化学 - 力学模型及变分多尺度框架
Parallel Simulations of Dynamic Fracture Using Extrinsic Cohesive Elements
  • DOI:
    10.1007/s10915-008-9254-0
  • 发表时间:
    2008-11-08
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Isaac Dooley;Sandhya Mangala;Laxmikant Kale;Philippe Geubelle
  • 通讯作者:
    Philippe Geubelle

Philippe Geubelle的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philippe Geubelle', 18)}}的其他基金

Active Dynamic Granular Metamaterial through Controlled Jamming-Unjammming Transitions
通过受控干扰-解除干扰过渡的主动动态颗粒超材料
  • 批准号:
    1761243
  • 财政年份:
    2018
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Standard Grant
Multidisciplinary Design of Microvascular Composites Based on a Hierarchical Approach
基于分层方法的微血管复合材料的多学科设计
  • 批准号:
    1436720
  • 财政年份:
    2014
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Standard Grant
REU Site: Multidisciplinary Research in Aerospace Science and Engineering
REU 网站:航空航天科学与工程的多学科研究
  • 批准号:
    0648996
  • 财政年份:
    2007
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Standard Grant
Multiscale Experimental and Numerical Design of a Self-Healing Epoxy Adhesive
自修复环氧粘合剂的多尺度实验和数值设计
  • 批准号:
    0527965
  • 财政年份:
    2005
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Standard Grant
CAREER: High Speed Grinding of Ceramics: Process Simulation and Damage Assessment
职业:陶瓷高速研磨:过程模拟和损伤评估
  • 批准号:
    9734473
  • 财政年份:
    1998
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Standard Grant
Experimental and Analytical Investigation of Dynamic Fiber Pull-Out in Composites
复合材料中动态纤维拉拔的实验和分析研究
  • 批准号:
    9712291
  • 财政年份:
    1997
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Continuing Grant

相似国自然基金

度量测度空间上基于狄氏型和p-energy型的热核理论研究
  • 批准号:
    QN25A010015
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Revealing Particle Acceleration Mechanisms by Magnetic Energy Release with Advanced Hard X-ray Solar Imaging Spectroscopy
利用先进的硬 X 射线太阳成像光谱揭示磁能释放的粒子加速机制
  • 批准号:
    22KJ0873
  • 财政年份:
    2023
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidation of the oxygen storage/release reaction mechanism of large-capacity oxygen storage materials and performance improvement for realizing energy-saving oxygen production
阐明大容量储氧材料储放氧反应机理及性能改进实现节能制氧
  • 批准号:
    23KJ0033
  • 财政年份:
    2023
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Flaring energy release in the Sun's atmosphere
太阳大气中的耀斑能量释放
  • 批准号:
    2748209
  • 财政年份:
    2022
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Studentship
Explosive energy release in space plasmas: unravelling the magnetospheric dynamics of substorms
空间等离子体中的爆炸性能量释放:揭示亚暴的磁层动力学
  • 批准号:
    2573668
  • 财政年份:
    2021
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Studentship
Midbrain astrocyte energy metabolism regulating drug-evoked dopamine release and behavior
中脑星形胶质细胞能量代谢调节药物诱发的多巴胺释放和行为
  • 批准号:
    10396967
  • 财政年份:
    2021
  • 资助金额:
    $ 32.37万
  • 项目类别:
Dynamic Fracturing and Energy Release Mechanisms in Heterogeneous Materials
异质材料的动态断裂和能量释放机制
  • 批准号:
    DE200101293
  • 财政年份:
    2020
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Discovery Early Career Researcher Award
Impulsive energy release in the Sun's atmosphereImpulsive energy release in the Sun's atmosphere
太阳大气中的脉冲能量释放太阳大气中的脉冲能量释放
  • 批准号:
    2353288
  • 财政年份:
    2019
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Studentship
Collaborative Research: Energy Release and Transport in Impulsive Phase of Solar Flares
合作研究:太阳耀斑脉冲阶段的能量释放和传输
  • 批准号:
    1916511
  • 财政年份:
    2019
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Standard Grant
Collaborative Research: Energy Release and Transport in Impulsive Phase of Solar Flares
合作研究:太阳耀斑脉冲阶段的能量释放和传输
  • 批准号:
    1916509
  • 财政年份:
    2019
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Standard Grant
Explosive energy release in solar and space plasmas
太阳和太空等离子体中的爆炸性能量释放
  • 批准号:
    2234689
  • 财政年份:
    2019
  • 资助金额:
    $ 32.37万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了