Collaborative: MSPA-MCS: Computational and Mathematical Foundations for the Synthesis of Multiresolution Representations with Variational Integrators and Discrete Geometry
协作:MSPA-MCS:使用变分积分器和离散几何合成多分辨率表示的计算和数学基础
基本信息
- 批准号:0528101
- 负责人:
- 金额:$ 30.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-10-01 至 2008-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractEffects ranging from very small to very large scales govern physical phenomena such as the evolution of a storm system or the structural deformation of an automobile during an accident. Accurately predicting these by resolving the finest scales in a computer simulation is prohibitively expensive. The investigators are studying how fine scale information impacts coarse scale behavior and vice versa. In effect, "summarizing" these relationships allow us to model coarse scale effects accurately and efficiently without the need to explicitly resolve the finest scales in a computation. A key to this study lies in the careful transfer of structures present in the mathematical models of these phenomena (which in essence have infinite resolution) to the computational realm with its finite resolution and finite computational resources. The methods being developed will allow rapid assessment of overall effects with the ability "to drill down" computationally where additional detail is required.Physical systems are typically described by a set of continuous equations using tools from geometric mechanics and differential geometry to analyze and capture their properties. For purposes of computation one must derive discrete (in space and time) representations of the underlying equations. Theories which are discrete from the start (rather than discretized after the fact), with key geometric properties built in, can more readily yield robust numerical simulations which are true to the underlying continuous systems: they exactly preserve invariants of the continuous systems in the discrete computational realm. So far these methods have not accounted for effects across scales. Yet both physics and numerical computation require such multi-resolution strategies. This research project is developing a multi-resolution theory for discrete variational methods and discrete differential geometry with applications to thin-shell and fluid modeling. The principal scientific innovation lies in techniques to conserve symmetries across computational scales.
影响范围从非常小到非常大的尺度支配物理现象,如风暴系统的演变或事故中汽车的结构变形。通过在计算机模拟中解析最精细的尺度来准确预测这些是非常昂贵的。研究人员正在研究细尺度信息如何影响粗尺度行为,反之亦然。实际上,“总结”这些关系使我们能够准确有效地模拟粗糙的尺度效应,而无需在计算中显式地解决最精细的尺度。这项研究的关键在于仔细转移的结构存在于这些现象的数学模型(本质上有无限的分辨率)的计算领域,其有限的分辨率和有限的计算资源。正在开发的方法将允许快速评估总体影响,并在需要额外细节的情况下通过计算“向下钻取”。物理系统通常由一组连续方程描述,使用几何力学和微分几何的工具来分析和捕获它们的属性。为了计算的目的,必须推导出基本方程的离散(在空间和时间上)表示。从一开始就离散的理论(而不是事后离散化的理论),具有内置的关键几何性质,可以更容易地产生鲁棒的数值模拟,这些模拟对底层的连续系统是真实的:它们在离散计算领域中精确地保持了连续系统的不变量。到目前为止,这些方法还没有考虑到跨尺度的影响。然而,物理学和数值计算都需要这样的多分辨率策略。本研究计画为离散变分法与离散微分几何发展多解析度理论,并应用于薄壳与流体模型。主要的科学创新在于跨计算尺度保持对称性的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Schroder其他文献
Rolling spheres and the Willmore energy
滚动球体和威尔莫尔能量
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Felix Knoppel;U. Pinkall;Peter Schroder;Yousuf Soliman - 通讯作者:
Yousuf Soliman
小児アレルギーシリーズ、アトピー性皮膚炎
小儿过敏系列、特应性皮炎
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jean Krutmann;Peter Schroder;and Akimichi Morita;Jean Krutmann and Akimichi Morita;森田 明理 - 通讯作者:
森田 明理
Hautalterung 2 Auflage
豪塔特龙 2 号飞机
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jean Krutmann;Peter Schroder;and Akimichi Morita - 通讯作者:
and Akimichi Morita
Multiobjective Optimisation Approach to Robust Controller Design
- DOI:
10.1016/s1474-6670(17)32922-1 - 发表时间:
2001-11-01 - 期刊:
- 影响因子:
- 作者:
lan Griffin;Peter Schroder;Andrew Chipperfield;Peter Fleming - 通讯作者:
Peter Fleming
Peter Schroder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Schroder', 18)}}的其他基金
Subdivision and the Construction of Smooth Bases for Discrete Differential Forms
离散微分形式的细分与光滑基底的构造
- 批准号:
0635112 - 财政年份:2007
- 资助金额:
$ 30.22万 - 项目类别:
Standard Grant
ITR: Constructive Visualization: Understanding Spatial Relationships Through Interaction
ITR:建设性可视化:通过交互理解空间关系
- 批准号:
0219979 - 财政年份:2002
- 资助金额:
$ 30.22万 - 项目类别:
Continuing Grant
Collaborative Research: Modeling and Processing of Topologically Complex 3D Shapes
合作研究:拓扑复杂 3D 形状的建模和处理
- 批准号:
0220905 - 财政年份:2002
- 资助金额:
$ 30.22万 - 项目类别:
Continuing Grant
Collaborative Research: Compression of Geometry Datasets
合作研究:几何数据集的压缩
- 批准号:
0138458 - 财政年份:2002
- 资助金额:
$ 30.22万 - 项目类别:
Continuing Grant
Multiresolution Algorithms for Rapid Modeling, Simulation, and Visualization
用于快速建模、仿真和可视化的多分辨率算法
- 批准号:
9721349 - 财政年份:1998
- 资助金额:
$ 30.22万 - 项目类别:
Continuing Grant
MRI: Equipment Acquisition for Research in Enabling Technologies for Volumetric Imaging, Responsive Displays andTelecollaboration
MRI:为研究体积成像、响应式显示和远程协作支持技术而采购的设备
- 批准号:
9871235 - 财政年份:1998
- 资助金额:
$ 30.22万 - 项目类别:
Standard Grant
OPAAL: Integrated Design, Modeling, and Simulation
OPAAL:集成设计、建模和仿真
- 批准号:
9874082 - 财政年份:1998
- 资助金额:
$ 30.22万 - 项目类别:
Continuing Grant
Career: Wavelet Methods: Connecting Theory and Application
职业:小波方法:理论与应用的结合
- 批准号:
9624957 - 财政年份:1996
- 资助金额:
$ 30.22万 - 项目类别:
Continuing Grant
相似国自然基金
顾及MSPA格局影响的土地利用矢量空间格局模拟与情景优化
- 批准号:n/a
- 批准年份:2023
- 资助金额:30.0 万元
- 项目类别:省市级项目
相似海外基金
MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
- 批准号:
0732196 - 财政年份:2007
- 资助金额:
$ 30.22万 - 项目类别:
Standard Grant
MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
- 批准号:
0732175 - 财政年份:2007
- 资助金额:
$ 30.22万 - 项目类别:
Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
- 批准号:
0732318 - 财政年份:2007
- 资助金额:
$ 30.22万 - 项目类别:
Standard Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
- 批准号:
0732299 - 财政年份:2007
- 资助金额:
$ 30.22万 - 项目类别:
Standard Grant
MSPA-MCS: Collaborative Research: Algorithms for Near-Optimal Multistage Decision-Making under Uncertainty: Online Learning from Historical Samples
MSPA-MCS:协作研究:不确定性下近乎最优的多阶段决策算法:历史样本在线学习
- 批准号:
0732169 - 财政年份:2007
- 资助金额:
$ 30.22万 - 项目类别:
Standard Grant
Collaborative Research: MSPA-MCS: Simulation and Visualization of Flow at Interfaces
合作研究:MSPA-MCS:界面流动的仿真和可视化
- 批准号:
0625190 - 财政年份:2006
- 资助金额:
$ 30.22万 - 项目类别:
Standard Grant
Collaborative Research: MSPA-MCS: Sparse Multivariate Data Analysis
合作研究:MSPA-MCS:稀疏多元数据分析
- 批准号:
0625409 - 财政年份:2006
- 资助金额:
$ 30.22万 - 项目类别:
Standard Grant
Collaborative Research: MSPA-MCS: Sparse Multivariate Data Analysis
合作研究:MSPA-MCS:稀疏多元数据分析
- 批准号:
0625371 - 财政年份:2006
- 资助金额:
$ 30.22万 - 项目类别:
Standard Grant
Collaborative Research: MSPA-MCS: Simulation and Visualization of Flow at Interfaces
合作研究:MSPA-MCS:界面流动的仿真和可视化
- 批准号:
0625264 - 财政年份:2006
- 资助金额:
$ 30.22万 - 项目类别:
Standard Grant
Collaborative Research, MSPA-MCS: Sparse Multivariate Data Analysis
协作研究,MSPA-MCS:稀疏多元数据分析
- 批准号:
0625352 - 财政年份:2006
- 资助金额:
$ 30.22万 - 项目类别:
Standard Grant