Subdivision and the Construction of Smooth Bases for Discrete Differential Forms
离散微分形式的细分与光滑基底的构造
基本信息
- 批准号:0635112
- 负责人:
- 金额:$ 28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-04-01 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In order to simulate physical phenomena, such as fluid flow or electromagnetism, one must map the underlying equations to algorithms that can execute efficiently and reliably on a computer. This process of mapping involves discretization, for example, mapping a smooth surface to a triangle mesh. To ensure that the resulting computations are still meaningful this discretization step must be performed so as to preserve as many of the important physical structures as possible. In mathematical terms one must find discrete analogs for the operators of differential and integral calculus which follow the same theorems and structures as their abstract mathematical counterparts. To this end the PI together with his students will bring tools from geometric modeling (subdivision schemes) to the construction of discrete basis forms (which are the foundation of suitable numerical algorithms). Such tools will enable higher order and more accurate simulation of the equations at the heart of physical phenomena of interest. Building such foundational algorithms for numerical simulation will increase their reliability and speed and extend their impact in numerous scientific and engineering disciplines. When discretizing partial differential equations for purposes of numerical simulation much emphasis has been placed on numerical accuracy, stability, and convergence. Only in recent years has it been fully appreciated that preservation of continuous structures such as symmetry groups and their associated momenta can have equally dramatic impact on the performance of numerical simulations, and in some cases appears to be essential to fully predictive simulations. Discrete Exterior Calculus has emerged as a framework in which to study such discrete realizations of the basic operators of integral and differential calculus. So far the underlying theory has essentially been one of local approximation without attendant global smoothness properties (in fact, much of it has been piecewise linear only). This research uses tools known from the construction of refinable functions to construct smooth bases of discrete differential k-forms on simplicial three manifolds (with boundary). In particular the underlying deRham complex is induced by the simplicial co-boundary operator. Piecewise linear forms of this type have been known classically. The research team recently demonstrated that the concept of refinability together with certain discrete commutative relations are sufficient to produce bases of higher smoothness in the simplicial two manifold setting. The three manifold case (using tetrahedra rather than triangles) is considerably more challenging since no regular tetrahedralizations of three space exist. Furthermore the smoothness analysis of the resulting constructions will require new tools since new classes of singular cases need to be examined and standard assumption of refinable function theory are violated. The researchers will both construct (in the sense of providing algorithms and their implementation) and analyze such constructions.
为了模拟物理现象,如流体流动或电磁学,必须将基础方程映射为可以在计算机上有效可靠地执行的算法。这种映射过程涉及离散化,例如,将光滑表面映射到三角形网格。为了确保结果计算仍然有意义,必须执行离散化步骤,以便尽可能多地保留重要的物理结构。在数学术语中,我们必须找到微分和积分运算符的离散类似物,它们遵循与抽象数学对应符相同的定理和结构。为此,PI和他的学生将带来从几何建模(细分方案)到离散基形式的构建(这是合适的数值算法的基础)的工具。这样的工具将使在感兴趣的物理现象的核心方程的更高阶和更精确的模拟成为可能。为数值模拟建立这样的基础算法将提高它们的可靠性和速度,并扩大它们在许多科学和工程学科中的影响。当离散偏微分方程用于数值模拟时,数值精度、稳定性和收敛性是重点。直到最近几年,人们才充分认识到,保留连续结构,如对称群及其相关动量,对数值模拟的性能也有同样巨大的影响,在某些情况下,似乎对完全预测模拟至关重要。离散外微积分作为研究积分和微分基本算子的离散实现的框架而出现。到目前为止,潜在的理论本质上是一个局部逼近,没有伴随的全局光滑性(事实上,它的大部分都是分段线性的)。本研究利用可细化函数构造中已知的工具,在简单三流形(带边界)上构造离散微分k型的光滑基。特别地,下面的deRham复合体是由简单共边界算子推导出来的。这种类型的分段线性形式在经典中是已知的。该研究小组最近证明了可细化性的概念与某些离散交换关系足以在简单的两个流形设置中产生更高光滑性的基。三流形的情况(使用四面体而不是三角形)相当具有挑战性,因为不存在三个空间的正四面体化。此外,结果结构的平滑性分析将需要新的工具,因为需要检查新的奇异情况类别,并且违反了可细化函数理论的标准假设。研究人员将构建(在提供算法及其实现的意义上)并分析这些结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Schroder其他文献
Rolling spheres and the Willmore energy
滚动球体和威尔莫尔能量
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Felix Knoppel;U. Pinkall;Peter Schroder;Yousuf Soliman - 通讯作者:
Yousuf Soliman
小児アレルギーシリーズ、アトピー性皮膚炎
小儿过敏系列、特应性皮炎
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jean Krutmann;Peter Schroder;and Akimichi Morita;Jean Krutmann and Akimichi Morita;森田 明理 - 通讯作者:
森田 明理
Hautalterung 2 Auflage
豪塔特龙 2 号飞机
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Jean Krutmann;Peter Schroder;and Akimichi Morita - 通讯作者:
and Akimichi Morita
Multiobjective Optimisation Approach to Robust Controller Design
- DOI:
10.1016/s1474-6670(17)32922-1 - 发表时间:
2001-11-01 - 期刊:
- 影响因子:
- 作者:
lan Griffin;Peter Schroder;Andrew Chipperfield;Peter Fleming - 通讯作者:
Peter Fleming
Peter Schroder的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Schroder', 18)}}的其他基金
Collaborative: MSPA-MCS: Computational and Mathematical Foundations for the Synthesis of Multiresolution Representations with Variational Integrators and Discrete Geometry
协作:MSPA-MCS:使用变分积分器和离散几何合成多分辨率表示的计算和数学基础
- 批准号:
0528101 - 财政年份:2005
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
ITR: Constructive Visualization: Understanding Spatial Relationships Through Interaction
ITR:建设性可视化:通过交互理解空间关系
- 批准号:
0219979 - 财政年份:2002
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Collaborative Research: Modeling and Processing of Topologically Complex 3D Shapes
合作研究:拓扑复杂 3D 形状的建模和处理
- 批准号:
0220905 - 财政年份:2002
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Collaborative Research: Compression of Geometry Datasets
合作研究:几何数据集的压缩
- 批准号:
0138458 - 财政年份:2002
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Multiresolution Algorithms for Rapid Modeling, Simulation, and Visualization
用于快速建模、仿真和可视化的多分辨率算法
- 批准号:
9721349 - 财政年份:1998
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
MRI: Equipment Acquisition for Research in Enabling Technologies for Volumetric Imaging, Responsive Displays andTelecollaboration
MRI:为研究体积成像、响应式显示和远程协作支持技术而采购的设备
- 批准号:
9871235 - 财政年份:1998
- 资助金额:
$ 28万 - 项目类别:
Standard Grant
OPAAL: Integrated Design, Modeling, and Simulation
OPAAL:集成设计、建模和仿真
- 批准号:
9874082 - 财政年份:1998
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
Career: Wavelet Methods: Connecting Theory and Application
职业:小波方法:理论与应用的结合
- 批准号:
9624957 - 财政年份:1996
- 资助金额:
$ 28万 - 项目类别:
Continuing Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
相似海外基金
Priceworx Ultimate+: A world-first AI-driven material cost forecaster for construction project management.
Priceworx Ultimate:世界上第一个用于建筑项目管理的人工智能驱动的材料成本预测器。
- 批准号:
10099966 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Collaborative R&D
Facilitating circular construction practices in the UK: A data driven online marketplace for waste building materials
促进英国的循环建筑实践:数据驱动的废弃建筑材料在线市场
- 批准号:
10113920 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
SME Support
SBIR Phase II: High-Performance Batteries to Decarbonize Heavy Duty Construction Equipment
SBIR 第二阶段:高性能电池使重型建筑设备脱碳
- 批准号:
2335320 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Cooperative Agreement
Resistance to gender equality in the Australian construction sector
澳大利亚建筑行业对性别平等的抵制
- 批准号:
DE240100962 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Discovery Early Career Researcher Award
A Knowledge-aware Multi-tasks-based Disease Network Construction on Biomedical Literature
基于生物医学文献的知识感知多任务疾病网络构建
- 批准号:
24K15097 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing Intercultural Competence through Empathy: Construction of a Video Interview Resource of Japanese Immigrants
通过同理心培养跨文化能力:日本移民视频采访资源的构建
- 批准号:
24K16149 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Solving cashflow shortfalls in the construction industry using digital payments with embedded finance
使用数字支付和嵌入式金融解决建筑行业的现金流短缺
- 批准号:
10097800 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Collaborative R&D
AtomCat4Fuel: Atomically construction of AuPd catalyst for efficient CO2 hydrogenation to ethanol
AtomCat4Fuel:原子构建 AuPd 催化剂,用于高效 CO2 加氢生成乙醇
- 批准号:
EP/Y029305/1 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Fellowship
(DISC) Demountable, Resilient, and Sustainable Construction Technology for Next- Generation Biologically Inspired Buildings
(DISC) 下一代仿生建筑的可拆卸、弹性和可持续建筑技术
- 批准号:
EP/Z000998/1 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Fellowship
Ruthenium catalysed C-H functionalization for the construction of DNA-Encoded Libraries
钌催化的 C-H 功能化用于构建 DNA 编码文库
- 批准号:
EP/Z001404/1 - 财政年份:2024
- 资助金额:
$ 28万 - 项目类别:
Fellowship