Strongly Correlated Fermi Systems
强相关费米系统
基本信息
- 批准号:0528969
- 负责人:
- 金额:$ 66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-12-15 至 2009-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant supports theoretical research on condensed matter and materials physics. In particular, the research furthers the development and applications of advanced methods to describe electronic materials in which the electrons are strongly interacting (correlated). The methods developed on this grant will find widespread application.Intellectual Merit: Strong correlations in solids drive a wealth of new and unusual physical properties, ranging from complex charge spin and orbital ordering phenomena, unconventional superconductivity, ultrafast nonlinear optical responses, large thermoelectric coefficients, huge volume collapses, and numerous metal-to-insulator transitions. Over a wide range of temperatures and compositions, strongly correlated materials are poorly described by the standard model of solids, which is unable to describe phenomena such as anomalously large metallic resistivities and transfer of spectral weight over large frequency intervals. These materials pose a high intellectual challenge to condensed matter theory, demanding a new theoretical framework to account for their unique physical properties. A nonperturbative methodology is needed to compute their physical properties from first principles, and simple pictures of these complex systems must be developed to accompany analytic and numerical computations. Dynamical Mean Field Theory (DMFT) provides an approach to these interesting issues by reducing the complex many-body problem to self-consistent impurity (or to a cluster of impurity) models, which give a simpler picture of these complex materials and allow the computation of their physical properties in parameter regimes where the standard theory of solids does not apply. Our research links the low energy simplified pictures of the strong correlation phenomena to the computationally intensive calculations that model the microscopic complexity of real materials.Objective and methods: This grant includes the following projects:_ We will develop a first-principles approach for practical computation of the electronic structure of complex correlated materials. This approach will build on renormalization and DMFT ideas. We will explore the unusual properties of the layered cobaltates and the origin of the large thermoelectric response in this class of materials using a combination of model Hamiltonian and first principles techniques. _ We will investigate the description of the unusual electronic excitations present in correlated materials. In particular, we will study the destruction of the Fermi surface as the Mott transition is approached in models describing copper oxides and kappa organic salts with newly developed Cellular DMFT technique. The influence of proximity to different forms of order on this phenomenon will be investigated. We will also explore the evolution of the nature of the electronic excitations in heavy Fermion systems when the Kondo interaction is comparable to the RKKY exchange energy.Broader Impact. Our long-term research objectives are to develop methods and techniques capable of explaining and ultimately predicting the properties of solids that contain correlated electrons. We believe that theory will ultimately play an important role in the design of materials for practical applications. Our advances in understanding materials will provide new avenues for designing them, and strongly correlated materials will play an important role in this area. While developing concepts and tools to gain understanding in this area, we are at the same time training post-doctoral associates graduate and undergraduate students. These individuals are developing the skills needed to analyze and solve complex problems and perform analytic andnumerical computations, skills that can make important contributions to our technological society. Much of this work will be accomplished in collaboration with European groups. This will provide excellent learning experiences for postdoctoral associates and students.
该补助金支持凝聚态和材料物理学的理论研究。 特别是,该研究进一步推动了描述电子强烈相互作用(相关)的电子材料的先进方法的开发和应用。 智力成果:固体中的强相关性驱动了大量新的和不寻常的物理性质,包括复杂的电荷自旋和轨道有序现象、非常规的超导性、超快非线性光学响应、大热电系数、巨大的体积坍缩以及众多的金属到绝缘体的转变。在很大的温度和成分范围内,标准固体模型对强相关材料的描述很差,无法描述异常大的金属电阻率和大频率间隔内光谱权重转移等现象。这些材料对凝聚态理论提出了很高的智力挑战,需要一个新的理论框架来解释它们独特的物理性质。一个非微扰的方法是需要从第一原理计算它们的物理性质,和这些复杂的系统的简单图片必须开发陪同分析和数值计算。动力学平均场理论(DMFT)通过将复杂的多体问题简化为自洽的杂质(或杂质簇)模型,提供了一种解决这些有趣问题的方法,该模型给出了这些复杂材料的更简单的图像,并允许在标准固体理论不适用的参数范围内计算其物理性质。我们的研究将强相关现象的低能简化图像与模拟真实的材料微观复杂性的计算密集型计算联系起来。目标和方法:该资助包括以下项目:_我们将开发复杂相关材料电子结构的实际计算的第一原理方法。 这种方法将建立在重整化和DMFT思想的基础上。我们将探讨不寻常的属性的层状钴酸盐和起源的大热电响应在这类材料中使用模型哈密顿量和第一原理技术相结合。我们将研究相关材料中存在的不寻常电子激发的描述。特别是,我们将研究破坏的费米面的莫特转变接近模型描述铜氧化物和卡帕有机盐与新开发的细胞DMFT技术。将研究接近不同形式的秩序对这种现象的影响。我们还将探讨当近藤相互作用与RKKY交换能相当时,重费米子系统中电子激发性质的演化。我们的长期研究目标是开发能够解释并最终预测包含相关电子的固体性质的方法和技术。我们相信,理论最终将在实际应用的材料设计中发挥重要作用。我们在理解材料方面的进步将为设计它们提供新的途径,强相关材料将在这一领域发挥重要作用。 在开发概念和工具以获得这一领域的理解的同时,我们同时培训博士后研究生和本科生。这些人正在发展分析和解决复杂问题所需的技能,并进行分析和数值计算,这些技能可以为我们的技术社会做出重要贡献。 其中大部分工作将与欧洲团体合作完成。 这将为博士后同事和学生提供良好的学习经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel Kotliar其他文献
Clean realization of Hund's physics near the Mott transition:
NiS2
under pressure
洪德物理学在莫特转变附近的清晰实现:压力下的 NiS2
- DOI:
10.1103/physrevb.109.045146 - 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
Ina Park;B. Jang;Dong Wook Kim;J. H. Shim;Gabriel Kotliar - 通讯作者:
Gabriel Kotliar
A Tale of Two Phase Diagrams
- DOI:
10.1023/a:1013854927222 - 发表时间:
2002-02-01 - 期刊:
- 影响因子:1.400
- 作者:
Gabriel Kotliar - 通讯作者:
Gabriel Kotliar
emPortobello/em - Quantum embedding in correlated materials made accessible
emPortobello/em - 使相关材料中的量子嵌入变得可及
- DOI:
10.1016/j.cpc.2023.108907 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:3.400
- 作者:
Ran Adler;Corey Melnick;Gabriel Kotliar - 通讯作者:
Gabriel Kotliar
Optical spectroscopy and photoemission of <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si13.gif" overflow="scroll" class="math"><mi mathvariant="normal">α</mi></math>- and <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si14.gif" overflow="scroll" class="math"><mi mathvariant="normal">γ</mi></math>-cerium from LDA+DMFT
- DOI:
10.1016/j.physb.2005.01.015 - 发表时间:
2005-04-30 - 期刊:
- 影响因子:
- 作者:
Kristjan Haule;Gabriel Kotliar - 通讯作者:
Gabriel Kotliar
Deep learning-based superconductivity prediction and experimental tests
- DOI:
10.1140/epjp/s13360-024-05947-w - 发表时间:
2025-01-22 - 期刊:
- 影响因子:2.900
- 作者:
Daniel Kaplan;Adam Zheng;Joanna Blawat;Rongying Jin;Robert J. Cava;Viktor Oudovenko;Gabriel Kotliar;Anirvan M. Sengupta;Weiwei Xie - 通讯作者:
Weiwei Xie
Gabriel Kotliar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriel Kotliar', 18)}}的其他基金
DMREF/Collaborative Research: Designing, Understanding and Functionalizing Novel Superconductors and Magnetic Derivatives
DMREF/合作研究:新型超导体和磁性衍生物的设计、理解和功能化
- 批准号:
1435918 - 财政年份:2014
- 资助金额:
$ 66万 - 项目类别:
Standard Grant
EAGER: A Data-Intensive Instrument for Strongly Correlated System Material Design
EAGER:用于强相关系统材料设计的数据密集型工具
- 批准号:
1342921 - 财政年份:2013
- 资助金额:
$ 66万 - 项目类别:
Standard Grant
Collaborative ITR: Computational Design of Magnetic and Superconducting Transitions Based on Cluster DMFT Approach to Electronic Structure Calculation
协作 ITR:基于电子结构计算的簇 DMFT 方法的磁和超导转变的计算设计
- 批准号:
0606096 - 财政年份:2006
- 资助金额:
$ 66万 - 项目类别:
Continuing Grant
ITR: Computational Design of Strongly Correlated Materials Based on a Combination of the Dynamical Mean Field and the GW Methods
ITR:基于动态平均场和引力场方法相结合的强相关材料的计算设计
- 批准号:
0312478 - 财政年份:2003
- 资助金额:
$ 66万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Network Cluster of Advanced Workstations for First Principles Electronic Structure Calculations of Complex Materials
MRI:获取先进工作站网络集群,用于复杂材料的第一原理电子结构计算
- 批准号:
0116068 - 财政年份:2001
- 资助金额:
$ 66万 - 项目类别:
Standard Grant
U.S.-Czech Materials Research on Many-Body Correlations in Calculations of Realistic Electronic Structure of Solids
美国-捷克材料研究在实际固体电子结构计算中的多体相关性
- 批准号:
9907893 - 财政年份:1999
- 资助金额:
$ 66万 - 项目类别:
Standard Grant
相似海外基金
Development of the dHvA experiment under pressure using constant load system and Fermi surface study for strongly correlated electron system
使用恒定负载系统开发压力下的 dHvA 实验和强相关电子系统的费米表面研究
- 批准号:
19K03713 - 财政年份:2019
- 资助金额:
$ 66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research to elucidate the formation process of strongly correlated many-body systems using high tunability of ultracold Fermi gas
利用超冷费米气体的高可调性来阐明强相关多体系统形成过程的研究
- 批准号:
19K03689 - 财政年份:2019
- 资助金额:
$ 66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI-Unconventional Anisotropic Order in Strongly Correlated Fermi Systems
RUI-强相关费米系统中的非常规各向异性阶次
- 批准号:
1410350 - 财政年份:2014
- 资助金额:
$ 66万 - 项目类别:
Standard Grant
Observation of two-fluid phenomena and measurement of transport coefficients for strongly correlated Fermi gases
强相关费米气体的双流体现象观察和输运系数测量
- 批准号:
23684033 - 财政年份:2011
- 资助金额:
$ 66万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Superfluidity in strongly correlated ultra-cold atomic Fermi gases
强相关超冷原子费米气体中的超流动性
- 批准号:
LX0989623 - 财政年份:2009
- 资助金额:
$ 66万 - 项目类别:
Linkage - International
Microscopic Description of Strongly Correlated Bose and Fermi Gases
强相关玻色和费米气体的微观描述
- 批准号:
0855332 - 财政年份:2009
- 资助金额:
$ 66万 - 项目类别:
Continuing Grant
Non-Fermi-liquid critical behaviour of strongly correlated electrons
强相关电子的非费米液体临界行为
- 批准号:
358271-2008 - 财政年份:2009
- 资助金额:
$ 66万 - 项目类别:
Postdoctoral Fellowships